Computer Networks Exercise Session 02

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
oliver.hahm@fb2.fra-uas.de
https://teaching.dahahm.de

November 03, 2023

General Schedule

All exercises will follow this general schedule

- Identify potential understanding problems
 - \rightarrow Ask your questions
 - ightarrow Recap of the lecture
- Address the understanding problems
 - \rightarrow Answer your questions
 - → Repeat certain topics
- $lue{}$ Walk through the exercises/solutions ightarrow Some hints and guidance
 - \rightarrow Work time or presentation of results

Components and Terms

You have seen

- what the general purpose of a Computer Network is
- which components are required for a Computer Network
- how Computer Networks can be distinguished by their dimension
- the difference between unicast, broadcast, multicast, and anycast
- what connection-orientation means
- what the directional dependence of data transmission is
- what bandwidth, throughput, goodput, and latency are

Reference Models

You have seen ...

- how a Computer Network can be broken down into layers
- what a reference model is and which relevant ones exist
- which layers exist in the hybrid reference model and what tasks they have

Any other questions left?

■ Each station of the telegraphic communications system has 6 telegraph arms with 4 positions each.

- Each station of the telegraphic communications system has 6 telegraph arms with 4 positions each.
- \implies This means $4^6 = 4096$ telegraph arm positions (= states) are possible.

- Each station of the telegraphic communications system has 6 telegraph arms with 4 positions each.
- \implies This means $4^6=4096$ telegraph arm positions (= states) are possible.
- → With 4096 states per adjustment, 12 bits can be encoded per adjustment.

- Each station of the telegraphic communications system has 6 telegraph arms with 4 positions each.
- \implies This means $4^6 = 4096$ telegraph arm positions (= states) are possible.
- With 4096 states per adjustment, 12 bits can be encoded per adjustment.
 - Explanation: With 2 states, 1 bit can be encoded. With 4 states, 2 bits can be encoded. With 8 states, 3 bits can be encoded. . . and with 4096 states, 12 bits can be encoded.

- Each station of the telegraphic communications system has 6 telegraph arms with 4 positions each.
- \implies This means $4^6=4096$ telegraph arm positions (= states) are possible.
- With 4096 states per adjustment, 12 bits can be encoded per adjustment.
 - Explanation: With 2 states, 1 bit can be encoded. With 4 states, 2 bits can be encoded. With 8 states, 3 bits can be encoded. . . and with 4096 states, 12 bits can be encoded.
 - A new adjustment of the telegraph arms can be performed every 10 seconds.

- Each station of the telegraphic communications system has 6 telegraph arms with 4 positions each.
- \implies This means $4^6 = 4096$ telegraph arm positions (= states) are possible.
- With 4096 states per adjustment, 12 bits can be encoded per adjustment.
 - Explanation: With 2 states, 1 bit can be encoded. With 4 states, 2 bits can be encoded. With 8 states, 3 bits can be encoded... and with 4096 states, 12 bits can be encoded.
 - A new adjustment of the telegraph arms can be performed every 10 seconds.

Data rate =
$$\frac{12 \text{ bit}}{10 \text{ s}} = \frac{1.2 \text{ bit/s}}{10 \text{ s}}$$

 ${\sf Latency} = {\sf Propagation} \ \, {\sf delay} + {\sf Transmission} \ \, {\sf delay} + {\sf Waiting} \ \, {\sf time}$

 ${\sf Latency} = {\sf Propagation} \ \, {\sf delay} + {\sf Transmission} \ \, {\sf delay} + {\sf Waiting} \ \, {\sf time}$

Propagation delay =
$$\frac{\text{Distance}}{\text{Speed of light * Velocity factor}}$$

$$\Rightarrow \frac{550 \text{ km}}{299,792,458 \text{ m/s}} = \frac{550,000 \text{ m}}{299,792,458 \text{ m/s}}$$

$$\approx 0.0018s = \textbf{1.8 ms}$$

Latency = Propagation delay + Transmission delay + Waiting time

Propagation delay =
$$\frac{\text{Distance}}{\text{Speed of light * Velocity factor}}$$

$$\Rightarrow \frac{550 \text{ km}}{299,792,458 \text{ m/s}} = \frac{550,000 \text{ m}}{299,792,458 \text{ m/s}}$$

$$\approx 0.0018s = \textbf{1.8 ms}$$

Waiting time =
$$61 * 1 min = 61 * 60 s = 3660 s$$

Latency = Propagation delay + Transmission delay + Waiting time

Propagation delay =
$$\frac{\text{Distance}}{\text{Speed of light * Velocity factor}}$$

$$\Rightarrow \frac{550 \text{ km}}{299,792,458 \text{ m/s}} = \frac{550,000 \text{ m}}{299,792,458 \text{ m/s}}$$

$$\approx 0.0018s = \textbf{1.8 ms}$$

Waiting time =
$$61 * 1 min = 61 * 60 s = 3660 s$$

$$\begin{array}{l} \text{Transmission delay} = \frac{\text{Message size}}{\text{Bandwidth}} \\ \\ \Rightarrow \frac{24 \text{ bit}}{1.2 \text{ bit/s}} = 20 \text{ s} \\ \\ \Rightarrow \frac{512 \text{ bit}}{1.2 \text{ bit/s}} \approx 426.7 \text{ s} \end{array}$$

Latency = Propagation delay + Transmission delay + Waiting time

$$\begin{aligned} \textbf{Propagation delay} &= \frac{\text{Distance}}{\text{Speed of light}*} \text{Velocity factor} \\ \Rightarrow & \frac{550 \text{ km}}{299,792,458 \text{ m/s}} = \frac{550,000 \text{ m}}{299,792,458 \text{ m/s}} \\ &\approx 0.0018s = \textbf{1.8 ms} \end{aligned}$$

$$\begin{aligned} & \textbf{Transmission delay} = \frac{\text{Message size}}{\text{Bandwidth}} \\ & \Rightarrow \frac{24 \text{ bit}}{1.2 \text{ bit/s}} = \textbf{20 s} \\ & \Rightarrow \frac{512 \text{ bit}}{1.2 \text{ bit/s}} \approx \textbf{426.7 s} \end{aligned}$$

Waiting time =
$$61 * 1 min = 61 * 60 s = 3660 s$$

Latency (24 bit)
$$\approx 0.0018 \text{ s} + 20 \text{ s} + 3660 \text{ s} = 3680.0018 \text{ s}$$

= 1:01:20.0018 h

Latency (512 bit) $\approx 0.0018 \text{ s} + 426.7 \text{ s} + 3660 \text{ s} = 4086.7.0018 \text{ s}$ = 1:08:06.7018 h

1.3

■ If the telegraph arms could be newly adjusted every 5 seconds . . .

If each station would require 5 minutes for forwarding . . .

- 1.3
 - If the telegraph arms could be newly adjusted every 5 seconds . . .
 - the data rate would double

$$\Rightarrow$$
 Data rate = $\frac{12 \text{ bit}}{5 \text{ s}} = 2.4 \text{ bit/s}$

If each station would require 5 minutes for forwarding . . .

1.3

- If the telegraph arms could be newly adjusted every 5 seconds . . .
 - the data rate would double

$$\Rightarrow$$
 Data rate = $\frac{12 \text{ bit}}{5 \text{ s}} = 2.4 \text{ bit/s}$

- the latency would be reduced by $10 \text{ s/}\sim 213 \text{ s}$
- If each station would require 5 minutes for forwarding . . .

1.3

- If the telegraph arms could be newly adjusted every 5 seconds . . .
 - the data rate would double

$$\Rightarrow$$
 Data rate = $\frac{12 \text{ bit}}{5 \text{ s}} = 2.4 \text{ bit/s}$

- the latency would be reduced by $10 \text{ s/}\sim 213 \text{ s}$
- If each station would require 5 minutes for forwarding . . .
 - the data rate would stay the same

- If the telegraph arms could be newly adjusted every 5 seconds . . .
 - the data rate would double

$$\Rightarrow$$
 Data rate = $\frac{12 \text{ bit}}{5 \text{ s}} = 2.4 \text{ bit/s}$

- the latency would be reduced by $10 \text{ s/}\sim 213 \text{ s}$
- If each station would require 5 minutes for forwarding . . .
 - the data rate would stay the same
 - the latency would increase by 61 * 4 * 60s = 244min = 04 : 04h
- 1.4

- If the telegraph arms could be newly adjusted every 5 seconds . . .
 - the data rate would double

$$\Rightarrow$$
 Data rate = $\frac{12 \text{ bit}}{5 \text{ s}} = 2.4 \text{ bit/s}$

- the latency would be reduced by $10 \text{ s}/\sim 213 \text{ s}$
- If each station would require 5 minutes for forwarding . . .
 - the data rate would stay the same
 - the latency would increase by 61 * 4 * 60s = 244min = 04 : 04h

- More positions would be harder to distinguish
- ⇒ Noise on the medium (e.g., rain) would increase the error probability

Exercise 2: Transmission Media

2.1 What transmission media are used for computer networks?

2.2 What is the transmission media used in cellular networks like LTE?

Exercise 2: Transmission Media

- 2.1 What transmission media are used for computer networks?
 - → Guided transmission media exist and can be Copper cables, where data is transferred as electrical impulses or fiber-optic cables, where data is transferred as light impulses. Wireless transmission can base on radio technology, infrared and laser.
- 2.2 What is the transmission media used in cellular networks like LTE?

Exercise 2: Transmission Media

2.1 What transmission media are used for computer networks?

- → Guided transmission media exist and can be Copper cables, where data is transferred as electrical impulses or fiber-optic cables, where data is transferred as light impulses. Wireless transmission can base on radio technology, infrared and laser.
- 2.2 What is the transmission media used in cellular networks like LTE?
- → Unguided transmission media, i.e., radio waves travelling through the air.

Image size

- 56 kbps Modem connection?
- 16 Mbps DSL connection?
- 100 Mbps Ethernet connection?
- 1 Gbps Ethernet connection?

Image size

$$1920 \times 1080$$
 pixels = 2,073,600 pixels * 3 bytes/pixel = 6,220,800 bytes * 8 = 49,766,400 bits

- 56 kbps Modem connection?
- 16 Mbps DSL connection?
- 100 Mbps Ethernet connection?
- 1 Gbps Ethernet connection?

Image size

$$1920 \times 1080$$
 pixels = 2,073,600 pixels * 3 bytes/pixel = 6,220,800 bytes * 8 = 49,766,400 bits

- 56 kbps Modem connection? $\frac{49,766,400 \text{ bit}}{56,000 \text{ bit/s}} = 888.686 \text{ s} \implies 14 \text{ min } 48.686 \text{ s}$
- 16 Mbps DSL connection?
- 100 Mbps Ethernet connection?
- 1 Gbps Ethernet connection?

Image size

$$1920 \times 1080$$
 pixels = 2,073,600 pixels * 3 bytes/pixel = 6,220,800 bytes * 8
= 49,766,400 bits

- 56 kbps Modem connection? $\frac{49,766,400 \text{ bit}}{56,000 \text{ bit/s}} = 888.686 \text{ s} \implies 14 \text{ min } 48.686 \text{ s}$
- = 16 Mbps DSL connection? $\frac{49,766,400 \text{ bit}}{16,000,000 \text{ bit/s}} = 3.1104 \text{ s}$
- 100 Mbps Ethernet connection?
- 1 Gbps Ethernet connection?

Image size

$$1920 \times 1080$$
 pixels = 2,073,600 pixels * 3 bytes/pixel = 6,220,800 bytes * 8 = 49,766,400 bits

- 56 kbps Modem connection? $\frac{49,766,400 \text{ bit}}{56,000 \text{ bit/s}} = 888.686 \text{ s} \implies 14 \text{ min } 48.686 \text{ s}$
- 16 Mbps DSL connection? $\frac{49,766,400 \text{ bit}}{16,000,000 \text{ bit/s}} = 3.1104 \text{ s}$
- 100 Mbps Ethernet connection? $\frac{49,766,400 \text{ bit}}{100,000,000 \text{ bit/s}} = 497.664 \text{ ms}$
- 1 Gbps Ethernet connection?

Image size

$$1920 \times 1080$$
 pixels = 2,073,600 pixels * 3 bytes/pixel = 6,220,800 bytes * 8 = 49,766,400 bits

- 56 kbps Modem connection? $\frac{49,766,400 \text{ bit}}{56,000 \text{ bit/s}} = 888.686 \text{ s} \implies 14 \text{ min } 48.686 \text{ s}$
- 16 Mbps DSL connection? $\frac{49,766,400 \text{ bit}}{16,000,000 \text{ bit/s}} = 3.1104 \text{ s}$
- 100 Mbps Ethernet connection? $\frac{49,766,400 \text{ bit}}{100,000,000 \text{ bit/s}} = 497.664 \text{ ms}$
- 1 Gbps Ethernet connection? $\frac{49,766,400 \text{ bit}}{1,000,000,000 \text{ bit/s}} = 49.7664 \text{ ms}$

Assume the image is compressed with a compression algorithm that reduces the image size by 85%.

Compressed image size

- 56 kbps Modem connection?
- 16 Mbps DSL connection?
- 100 Mbps Ethernet connection?
- 1 Gbps Ethernet connection?

Assume the image is compressed with a compression algorithm that reduces the image size by 85%.

Compressed image size

$$49,766,400$$
 bits $*15\% = 7,464,960$ bits

- 56 kbps Modem connection?
- 16 Mbps DSL connection?
- 100 Mbps Ethernet connection?
- 1 Gbps Ethernet connection?

Assume the image is compressed with a compression algorithm that reduces the image size by 85%.

Compressed image size

$$49,766,400$$
 bits $*15\% = 7,464,960$ bits

- 56 kbps Modem connection? $\frac{7,464,960 \text{ bit}}{56,000 \text{ bit/s}} = 133.3 \text{ s} \Longrightarrow 2 \text{ min } 13.3 \text{ s}$
- 16 Mbps DSL connection?
- 100 Mbps Ethernet connection?
- 1 Gbps Ethernet connection?

Assume the image is compressed with a compression algorithm that reduces the image size by 85%.

Compressed image size

$$49,766,400$$
 bits $*15\% = 7,464,960$ bits

- 56 kbps Modem connection? $\frac{7,464,960 \text{ bit}}{56,000 \text{ bit/s}} = 133.3 \text{ s} \Longrightarrow 2 \text{ min } 13.3 \text{ s}$
- 16 Mbps DSL connection? $\frac{7,464,960 \text{ bit}}{16,000,000 \text{ bit/s}} = 466.56 \text{ ms}$
- 100 Mbps Ethernet connection?
- 1 Gbps Ethernet connection?

Assume the image is compressed with a compression algorithm that reduces the image size by 85%.

Compressed image size

$$49,766,400$$
 bits $*15\% = 7,464,960$ bits

- 56 kbps Modem connection? $\frac{7,464,960 \text{ bit}}{56,000 \text{ bit/s}} = 133.3 \text{ s} \Longrightarrow 2 \text{ min } 13.3 \text{ s}$
- 16 Mbps DSL connection? $\frac{7,464,960 \text{ bit}}{16,000,000 \text{ bit/s}} = 466.56 \text{ ms}$
- 100 Mbps Ethernet connection? $\frac{7,464,960 \text{ bit}}{100,000,000 \text{ bit/s}} = 74.6496 \text{ ms}$
- 1 Gbps Ethernet connection?

Exercise 3.2: Transfer Time

Assume the image is compressed with a compression algorithm that reduces the image size by 85%.

Compressed image size

$$49,766,400$$
 bits $*15\% = 7,464,960$ bits

How long does it take to transmit the image via a ...

- 56 kbps Modem connection? $\frac{7,464,960 \text{ bit}}{56,000 \text{ bit/s}} = 133.3 \text{ s} \Longrightarrow 2 \text{ min } 13.3 \text{ s}$
- 16 Mbps DSL connection? $\frac{7,464,960 \text{ bit}}{16,000,000 \text{ bit/s}} = 466.56 \text{ ms}$
- = 100 Mbps Ethernet connection? $\frac{7,464,960 \text{ bit}}{100,000,000 \text{ bit/s}} = 74.6496 \text{ ms}$
- 1 Gbps Ethernet connection? $\frac{7,464,960 \text{ bit}}{1,000,000,000 \text{ bit/s}} = 7.46496 \text{ ms}$

Solution for CDs with 15 PB

Number of CDs:

CD stack height:

Solution for CDs with 15 PiB

Number of CDs:

CD stack height:

Solution for CDs with 15 PB

Number of CDs: $\frac{15*10^{15} \text{ Byte}}{600*10^6 \text{ Byte}} = 25,000,000$

CD stack height:

Solution for CDs with 15 PiB

Number of CDs:

CD stack height:

Solution for CDs with 15 PB

```
Number of CDs: \frac{15*10^{15} \text{ Byte}}{600*10^6 \text{ Byte}} = 25,000,000
```

CD stack height: 25,000,000 * 1.2 mm = 30,000,000 mm

= 3,000,000 cm= 30,000 m

=30 km

Solution for CDs with 15 PiB

Number of CDs:

CD stack height:

Solution for CDs with 15 PB

```
Number of CDs: \frac{15*10^{15} \text{ Byte}}{600*10^6 \text{ Byte}} = 25,000,000
```

CD stack height: 25,000,000 * 1.2 mm = 30,000,000 mm

= 3,000,000 cm= 30,000 m = 30 km

Solution for CDs with 15 PiB

Number of CDs: $\frac{15*2^{50} \text{ Byte}}{600*10^6 \text{ Byte}} = 28,147,498$

CD stack height: 28,147,498*1.2 mm = 33,776,997.6 mm

= 3,377,699.76 cm

 $\approx 33,777 \text{ m} = 33.78 \text{ km}$

Solution for HDDs with 15 PB

Number of HDDs:

HDD stack height:

Solution for HDDs with 15 PiB

Number of HDDs:

HDD stack height:

Solution for HDDs with 15 PB

Number of HDDs: $\frac{15*10^{15} \text{ Byte}}{2*10^{12} \text{ Byte}} = 7,500$

HDD stack height: 7,500 * 2.5 cm = 18,750 cm

= 187.5 m

Solution for HDDs with 15 PiB

Number of HDDs:

HDD stack height:

Solution for HDDs with 15 PB

Number of HDDs: $\frac{15*10^{15} \text{ Byte}}{2*10^{12} \text{ Byte}} = 7,500$

HDD stack height: 7,500 * 2.5 cm = 18,750 cm

= 187.5 m

Solution for HDDs with 15 PiB

Number of HDDs: $\frac{15*2^{50} \text{ Byte}}{2*10^{12} \text{ Byte}} = 8,444.2493$

HDD stack height: 8,445*2.5 cm = 21,112.5 cm

= 211.125 m

Solution for th	ne 40 Gbit/s networ	k with 15 PB
-----------------	---------------------	--------------

40 Gbit/s bandwidth:

Duration of transmission:

Solution for the 40 Gbit/s network with 15 PiB

40 Gbit/s bandwidth:

Solution for the 40 Gbit/s network with 15 PB

40 Gbit/s bandwidth: 40 Gbit/s = 40,000,000,000 Bit/s = 5,000,000,000 Byte/s

Duration of transmission:

Solution for the 40 Gbit/s network with 15 PiB

40 Gbit/s bandwidth:

Solution for the 40 Gbit/s network with 15 PB

```
40 Gbit/s bandwidth: 40 Gbit/s = 40,000,000,000 Bit/s = 5,000,000,000 Byte/s 

Duration of transmission: \frac{15*10^{15} \text{ Byte}}{5*10^9 \text{ Byte/s}} = 3*10^6 \text{ s} = 3,000,000 \text{ s} = 50,000 min \approx 833.333 \text{ h} = 34.722 d
```

Solution for the 40 Gbit/s network with 15 PiB

40 Gbit/s bandwidth:

Solution for the 40 Gbit/s network with 15 PB

```
40 Gbit/s bandwidth: 40 Gbit/s = 40,000,000,000 Bit/s = 5,000,000,000 Byte/s 

Duration of transmission: \frac{15*10^{15} \text{ Byte}}{5*10^{9} \text{ Byte/s}} = 3*10^{6} \text{ s} = 3,000,000 \text{ s}
= 50,000 \text{ min}
\approx 833.333 \text{ h}
= 34.722 \text{ d}
```

Solution for the 40 Gbit/s network with 15 PiB

```
40 Gbit/s bandwidth: 40 Gbit/s = 40,000,000,000 Bit/s = 5,000,000,000 Byte/s

Duration of transmission: \frac{15*2^{50}}{5*10^9} \frac{\text{Byte}}{\text{Byte}/\text{s}} = 3,377,699.72 \text{ s}
\approx 56,295 \text{ min}
\approx 938.25 \text{ h}
\approx 39.09 \text{ d}
```

Solution for the Fast Ethernet network with 15 PB

100 Mbit/s bandwidth:

Duration of transmission:

Solution for the Fast Ethernet network with 15 PiB

100 Mbit/s bandwidth:

Solution for the Fast Ethernet network with 15 PB

```
100 Mbit/s bandwidth: 100 Mbit/s = 100,000,000 Bit/s = 12,500,000 Byte/s = 12,500,000 Byte/s  
Duration of transmission: \frac{15*10^{15} \text{ Byte}}{12,500,000 \text{ Byte/s}} = 1,200,000,000 \text{ s} = 20,000,000 min \approx 333,333.333 \text{ h} \approx 13,888.888 \text{ d} \approx 38.02570538 \text{ y} \implies approx. 38 Years, 9 Days, 9 Hours, 20 Minutes
```

Solution for the Fast Ethernet network with 15 PiB

100 Mbit/s bandwidth:

Solution for the Fast Ethernet network with 15 ${\sf PB}$

```
100 Mbit/s bandwidth: 100 Mbit/s = 100,000,000 Bit/s = 12,500,000 Byte/s = 12,500,000 Byte/s  
Duration of transmission: \frac{15*10^{15} \text{ Byte}}{12,500,000 \text{ Byte/s}} = 1,200,000,000 \text{ s} = 20,000,000 min \approx 333,333.333 \text{ h} \approx 13,888.888 \text{ d} \approx 38.02570538 \text{ y} \implies approx. 38 Years, 9 Days, 9 Hours, 20 Minutes
```

Solution for the Fast Ethernet network with 15 PiB

```
100 Mbit/s bandwidth: 100 Mbit/s = 100,000,000 Bit/s = 12,500,000 Byte/s 

Duration of transmission: \frac{15*2^{50} \text{ Byte}}{12,500,000 \text{ Byte/s}} = 1,351,079,888 \text{ s}
= 22,517,998.13 \text{ min}
= 375,299.9688 \text{ h}
= 15,637.4987 \text{ d}
= 42.81313812 \text{ y}
\implies \text{approx. 42 Years, 296 Days, 23 Hours, 58 Minutes}
```

What do the results that mean for the given assumptions?

Latency for the file transfer at 56 kbps

File size: 30,000,000 bit

Data rate: 56,000 bit/s

Propagation delay Transmission delay Waiting time

Latency for the file transfer at 1 Mbps

File size: 30,000,000 bit

Data rate: 1,000,000 bit/s

Propagation delay Transmission delay

Waiting time

Latency for the file transfer at 56 kbps

File size: 30,000,000 bit **Data rate:** 56,000 bit/s

Propagation delay = 5,000,000 m/200,000,000 m/s = 0.025 sTransmission delay $= 30,000,000 bit/56,000 bit/s \approx 535.714 s$

Waiting time = 0

Latency for the file transfer at 1 Mbps

File size: 30,000,000 bit

Data rate: 1,000,000 bit/s

Propagation delay Transmission delay

Waiting time

Latency for the file transfer at 56 kbps

File size: 30,000,000 bit **Data rate:** 56,000 bit/s

Propagation delay = 5,000,000 m/200,000,000 m/s = 0.025 sTransmission delay $= 30,000,000 bit/56,000 bit/s \approx 535.714 s$

Waiting time = 0

 \Rightarrow Latency $\approx 0.025s + 535.714s = 535.739s = 8 : 55min$

Latency for the file transfer at 1 Mbps

File size: 30,000,000 bit

Data rate: 1,000,000 bit/s

Propagation delay Transmission delay Waiting time

Latency for the file transfer at 56 kbps

File size: 30,000,000 bit **Data rate:** 56,000 bit/s

Propagation delay = 5,000,000 m/200,000,000 m/s = 0.025 sTransmission delay $= 30,000,000 bit/56,000 bit/s \approx 535.714 s$

Waiting time = 0

 \Rightarrow Latency $\approx 0.025s + 535.714s = 535.739s = 8 : 55min$

Latency for the file transfer at 1 Mbps

File size: 30,000,000 bit

Data rate: 1,000,000 bit/s

Propagation delay = 5,000,000m/200,000,000m/s = 0.025sTransmission delay = 30,000,000bit/1,000,000bit/s = 30s

Waiting time = 0s

Latency for the file transfer at 56 kbps

File size: 30,000,000 bit **Data rate:** 56,000 bit/s

Propagation delay = 5,000,000 m/200,000,000 m/s = 0.025 sTransmission delay $= 30,000,000 bit/56,000 bit/s \approx 535.714 s$

Waiting time = 0

 \Rightarrow Latency $\approx 0.025s + 535.714s = 535.739s = 8 : 55 min$

Latency for the file transfer at 1 Mbps

File size: 30,000,000 bit

Data rate: 1,000,000 bit/s

Propagation delay =5,000,000m/200,000,000m/s = 0.025s Transmission delay =30,000,000bit/1,000,000bit/s = 30s

Waiting time = 0s

 \Rightarrow Latency = $0.025s + 30s \approx 30s$

Latency for the file transfer at 100 Mbps

File size: 30,000,000 bit

Data rate: 100,000,000 bit/s

Propagation delay Transmission delay

Waiting time

Latency for the file transfer at 100 Mbps

File size: 30,000,000 bit

Data rate: 100,000,000 bit/s

Propagation delay = 5,000,000m/200,000,000m/s = 0.025sTransmission delay $= 30,000,000bit/100,000,000bit/s \approx 0.3s$

Waiting time = 0s

 \Rightarrow Latency = 0.025s + 0.3s = 325ms

Volume of the network

Volume of the network \sim bandwidth-delay product

Volume of the network

Volume of the network \sim bandwidth-delay product

- → Only the propagation delay is relevant here!
- \Rightarrow Transmission delay = 0 s
- \Rightarrow Waiting time = 0 s

Volume of the network

Volume of the network \sim bandwidth-delay product

- \rightarrow Only the propagation delay is relevant here!
- \Rightarrow Transmission delay = 0 s
- \Rightarrow Waiting time = 0 s

Propagation delay = 0.025s = 25ms

Volume of the network

Volume of the network \sim bandwidth-delay product

- \rightarrow Only the propagation delay is relevant here!
- \Rightarrow Transmission delay = 0 s
- \Rightarrow Waiting time = 0 s

Propagation delay = 0.025s = 25ms

```
56,000 \text{ bit/s} * 0.025 \text{ s} = 1,400 \text{ bit}
1,000,000 \text{ bit/s} * 0.025 \text{ s} = 25,000 \text{ bit} = 25 \text{ kbit}
100,000,000 \text{ bit/s} * 0.025 \text{ s} = 2,500,000 \text{ bit} = 2.5 \text{ Mbit}
```

Exercise 6.1: Bandwidth-Delay Product

Calculate the Round Trip Time (RTT) for the link.

Exercise 6.1: Bandwidth-Delay Product

Calculate the Round Trip Time (RTT) for the link.

RTT = (2 * distance)/signal propagation speed

Exercise 6.1: Bandwidth-Delay Product

Calculate the Round Trip Time (RTT) for the link.

```
RTT = (2 * distance)/signal propagation speed
```

```
RTT = (2 * 55,000,000,000 m) / 299,792,458 m/s
= 110,000,000,000 m / 299,792,458 m/s
```

= 366.920504718 s

Exercise 6.2: Bandwidth-Delay Product

Calculate the bandwidth-delay product

Signal propagation speed = 299.792.458 m/s Distance = 55.000.000.000 m Transmission delay = 0 s Waiting time = 0 s

Exercise 6.2: Bandwidth-Delay Product

Calculate the bandwidth-delay product

Signal propagation speed = $299.792.458 \, \text{m/s}$ Distance = $55.000.000.000 \, \text{m}$ Transmission delay = $0 \, \text{s}$ Waiting time = $0 \, \text{s}$

$$\Rightarrow \frac{55,000,000 \text{ km}}{299,792,458 \text{ m/s}} = \frac{55,000,000,000 \text{ m}}{299,792,458 \text{ m/s}}$$
$$\approx 183,460 \text{ s}$$

 $\approx 183.460s$

 $128,000 bit/s * 183.460252359s = 23,482,912.302 bit \approx 23.48 Mbit$

Exercise 6.3: Bandwidth-Delay Product

File size: 20 MB

Data rate: 128,000 Bits/s

Propagation delay =

Transmission delay =

Waiting time = 0 s

Latency = propagation delay + transmission delay + waiting time

File size: 20 MB = 20,971,520 Bytes = 167,772,160 Bits

Exercise 6.3: Bandwidth-Delay Product

Data rate: 128,000 Bits/s

```
Propagation delay = 55,000,000,000 m / 299,792,458 m/s
= 183.460252359 s

Transmission delay = 167,772,160 Bits / 128,000 Bits/s
= 1,310.72 s
= 21 m 50.72 s

Waiting time = 0 s

Latency = propagation delay + transmission delay + waiting time
= 183.460252359 s + 1,310.72 s
= 1,494.18025236 s
= 24 min 54.18025236 s
```

Exercise 7: Unicast, Broadcast, Multicast, Anycast

- Writing a WhatsApp message to your classmate
- Shouting to a friend on the university yard
- Open a ticket at the CIT service desk
- Fire alarm siren
- Sending a message to Telegram group
- Broadcasting a radio program
- Writing an email to the Linux kernel mailing list

Exercise 7: Unicast, Broadcast, Multicast, Anycast

- Writing a WhatsApp message to your classmate Unicast
- Shouting to a friend on the university yard
- Open a ticket at the CIT service desk
- Fire alarm siren
- Sending a message to Telegram group
- Broadcasting a radio program
- Writing an email to the Linux kernel mailing list

- Writing a WhatsApp message to your classmate Unicast
- Shouting to a friend on the university yard Unicast
- Open a ticket at the CIT service desk
- Fire alarm siren
- Sending a message to Telegram group
- Broadcasting a radio program
- Writing an email to the Linux kernel mailing list

- Writing a WhatsApp message to your classmate Unicast
- Shouting to a friend on the university yard Unicast
- Open a ticket at the CIT service desk Anycast
- Fire alarm siren
- Sending a message to Telegram group
- Broadcasting a radio program
- Writing an email to the Linux kernel mailing list

- Writing a WhatsApp message to your classmate Unicast
- Shouting to a friend on the university yard Unicast
- Open a ticket at the CIT service desk Anycast
- Fire alarm siren Broadcast
- Sending a message to Telegram group
- Broadcasting a radio program
- Writing an email to the Linux kernel mailing list

- Writing a WhatsApp message to your classmate Unicast
- Shouting to a friend on the university yard Unicast
- Open a ticket at the CIT service desk Anycast
- Fire alarm sirenBroadcast
- Sending a message to Telegram group Multicast
- Broadcasting a radio program
- Writing an email to the Linux kernel mailing list

- Writing a WhatsApp message to your classmate Unicast
- Shouting to a friend on the university yard Unicast
- Open a ticket at the CIT service desk Anycast
- Fire alarm sirenBroadcast
- Sending a message to Telegram group Multicast
- Broadcasting a radio program Multicast
- Writing an email to the Linux kernel mailing list

- Writing a WhatsApp message to your classmate Unicast
- Shouting to a friend on the university yard Unicast
- Open a ticket at the CIT service desk Anycast
- Fire alarm siren
 Broadcast
- Sending a message to Telegram group Multicast
- Broadcasting a radio program Multicast
- Writing an email to the Linux kernel mailing list Multicast

- 8.1 Reason for the limitation
- 8.2 Directional dependence of walkie-talkies
- 8.3 Systems that operate according to the simplex principle
- 8.4 Advantage and drawback of simplex communication systems

- 8.5 Systems that operate according to the full-duplex principle
- 8.6 Advantage and drawback of full-duplex communication systems

- 8.1 Reason for the limitation
 Only a single channel is used.
- 8.2 Directional dependence of walkie-talkies
- 8.3 Systems that operate according to the simplex principle
- 8.4 Advantage and drawback of simplex communication systems

- 8.5 Systems that operate according to the full-duplex principle
- 8.6 Advantage and drawback of full-duplex communication systems

- 8.1 Reason for the limitation
 Only a single channel is used.
- 8.2 Directional dependence of walkie-talkies Half-duplex
- 8.3 Systems that operate according to the simplex principle
- 8.4 Advantage and drawback of simplex communication systems

- 8.5 Systems that operate according to the full-duplex principle
- 8.6 Advantage and drawback of full-duplex communication systems

- 8.1 Reason for the limitation
 Only a single channel is used.
- 8.2 Directional dependence of walkie-talkies Half-duplex
- 8.3 Systems that operate according to the simplex principle Radio, TV, pager, satellite, GPS, radio clock signal.
- 8.4 Advantage and drawback of simplex communication systems

- 8.5 Systems that operate according to the full-duplex principle
- 8.6 Advantage and drawback of full-duplex communication systems

- 8.1 Reason for the limitation
 Only a single channel is used.
- 8.2 Directional dependence of walkie-talkies Half-duplex
- 8.3 Systems that operate according to the simplex principle Radio, TV, pager, satellite, GPS, radio clock signal.
- 8.4 Advantage and drawback of simplex communication systems
 Advantage: When using a wireless network, only a single channel is required. When using a wired network, lesser cabeling effort is required.
- 8.5 Systems that operate according to the full-duplex principle
- 8.6 Advantage and drawback of full-duplex communication systems

- 8.1 Reason for the limitation
 Only a single channel is used.
- 8.2 Directional dependence of walkie-talkies Half-duplex
- 8.3 Systems that operate according to the simplex principle Radio, TV, pager, satellite, GPS, radio clock signal.
- 8.4 Advantage and drawback of simplex communication systems Advantage: When using a wireless network, only a single channel is required. When using a wired network, lesser cabeling effort is required. Drawback: The information transfer only works in one direction
- 8.5 Systems that operate according to the full-duplex principle
- 8.6 Advantage and drawback of full-duplex communication systems

- 8.1 Reason for the limitation Only a single channel is used.
- 8.2 Directional dependence of walkie-talkies Half-duplex
- 8.3 Systems that operate according to the simplex principle Radio, TV, pager, satellite, GPS, radio clock signal.
- 8.4 Advantage and drawback of simplex communication systems Advantage: When using a wireless network, only a single channel is required. When using a wired network, lesser cabeling effort is required. Drawback: The information transfer only works in one direction
- 8.5 Systems that operate according to the full-duplex principle Ethernet via twisted pair cables, telephone
- 8.6 Advantage and drawback of full-duplex communication systems

- 8.1 Reason for the limitation
 - Only a single channel is used.
- 8.2 Directional dependence of walkie-talkies Half-duplex
- 8.3 Systems that operate according to the simplex principle Radio, TV, pager, satellite, GPS, radio clock signal.
- 8.4 Advantage and drawback of simplex communication systems
 Advantage: When using a wireless network, only a single channel is required. When using a wired network, lesser cabeling effort is required.
- 8.5 Systems that operate according to the full-duplex principle Ethernet via twisted pair cables, telephone
- 8.6 Advantage and drawback of full-duplex communication systems

Drawback: The information transfer only works in one direction

Advantage: The information transfer works in both directions simultaneously. Drawbacks: When using a wireless network, multiple channels are required. When using a wired network, the cabeling effort is higher.

Statement	
Cable failure can separate the network in two functioning parts	
Topology contains a single point of failure	
Topology used for Thin Ethernet and Thick Ethernet	
Topology contains a performance bottleneck	
Topology used for WLAN, when no Access Point exists	
Topology used for Token Ring (logical)	
Topology used for mobile phones (GSM standard)	
Topology used for Token Ring (physical)	
Cable failure leads to complete network failure	
Topology contains no central component	
Topology used for WLAN, when an Access Point exists	
Topology used with modern Ethernet standards	

Statement	
Cable failure can separate the network in two functioning parts	Mesh, Tree, Bus
Topology contains a single point of failure	
Topology used for Thin Ethernet and Thick Ethernet	
Topology contains a performance bottleneck	
Topology used for WLAN, when no Access Point exists	
Topology used for Token Ring (logical)	
Topology used for mobile phones (GSM standard)	
Topology used for Token Ring (physical)	
Cable failure leads to complete network failure	
Topology contains no central component	
Topology used for WLAN, when an Access Point exists	
Topology used with modern Ethernet standards	

Statement	
Cable failure can separate the network in two functioning parts	Mesh, Tree, Bus
Topology contains a single point of failure	Bus (the medium!), Ring (the medium!), Star, Cellular
Topology used for Thin Ethernet and Thick Ethernet	
Topology contains a performance bottleneck	
Topology used for WLAN, when no Access Point exists	
Topology used for Token Ring (logical)	
Topology used for mobile phones (GSM standard)	
Topology used for Token Ring (physical)	
Cable failure leads to complete network failure	
Topology contains no central component	
Topology used for WLAN, when an Access Point exists	
Topology used with modern Ethernet standards	

Statement	
Cable failure can separate the network in two functioning parts	Mesh, Tree, Bus
Topology contains a single point of failure	Bus (the medium!), Ring (the medium!), Star, Cellular
Topology used for Thin Ethernet and Thick Ethernet	Bus
Topology contains a performance bottleneck	
Topology used for WLAN, when no Access Point exists	
Topology used for Token Ring (logical)	
Topology used for mobile phones (GSM standard)	
Topology used for Token Ring (physical)	
Cable failure leads to complete network failure	
Topology contains no central component	
Topology used for WLAN, when an Access Point exists	
Topology used with modern Ethernet standards	

Statement	
Cable failure can separate the network in two functioning parts	Mesh, Tree, Bus
Topology contains a single point of failure	Bus (the medium!), Ring (the medium!), Star, Cellular
Topology used for Thin Ethernet and Thick Ethernet	Bus
Topology contains a performance bottleneck	Star, Tree (the root!), Cellular
Topology used for WLAN, when no Access Point exists	
Topology used for Token Ring (logical)	
Topology used for mobile phones (GSM standard)	
Topology used for Token Ring (physical)	
Cable failure leads to complete network failure	
Topology contains no central component	
Topology used for WLAN, when an Access Point exists	
Topology used with modern Ethernet standards	

Statement	
Cable failure can separate the network in two functioning parts	Mesh, Tree, Bus
Topology contains a single point of failure	Bus (the medium!), Ring (the medium!), Star, Cellular
Topology used for Thin Ethernet and Thick Ethernet	Bus
Topology contains a performance bottleneck	Star, Tree (the root!), Cellular
Topology used for WLAN, when no Access Point exists	Mesh
Topology used for Token Ring (logical)	
Topology used for mobile phones (GSM standard)	
Topology used for Token Ring (physical)	
Cable failure leads to complete network failure	
Topology contains no central component	
Topology used for WLAN, when an Access Point exists	
Topology used with modern Ethernet standards	

Statement	
Cable failure can separate the network in two functioning parts	Mesh, Tree, Bus
Topology contains a single point of failure	Bus (the medium!), Ring (the medium!), Star, Cellular
Topology used for Thin Ethernet and Thick Ethernet	Bus
Topology contains a performance bottleneck	Star, Tree (the root!), Cellular
Topology used for WLAN, when no Access Point exists	Mesh
Topology used for Token Ring (logical)	Ring
Topology used for mobile phones (GSM standard)	
Topology used for Token Ring (physical)	
Cable failure leads to complete network failure	
Topology contains no central component	
Topology used for WLAN, when an Access Point exists	
Topology used with modern Ethernet standards	

Statement	
Cable failure can separate the network in two functioning parts	Mesh, Tree, Bus
Topology contains a single point of failure	Bus (the medium!), Ring (the medium!), Star, Cellular
Topology used for Thin Ethernet and Thick Ethernet	Bus
Topology contains a performance bottleneck	Star, Tree (the root!), Cellular
Topology used for WLAN, when no Access Point exists	Mesh
Topology used for Token Ring (logical)	Ring
Topology used for mobile phones (GSM standard)	Cellular
Topology used for Token Ring (physical)	
Cable failure leads to complete network failure	
Topology contains no central component	
Topology used for WLAN, when an Access Point exists	
Topology used with modern Ethernet standards	

Statement	
Cable failure can separate the network in two functioning parts	Mesh, Tree, Bus
Topology contains a single point of failure	Bus (the medium!), Ring (the medium!), Star, Cellular
Topology used for Thin Ethernet and Thick Ethernet	Bus
Topology contains a performance bottleneck	Star, Tree (the root!), Cellular
Topology used for WLAN, when no Access Point exists	Mesh
Topology used for Token Ring (logical)	Ring
Topology used for mobile phones (GSM standard)	Cellular
Topology used for Token Ring (physical)	Star
Cable failure leads to complete network failure	
Topology contains no central component	
Topology used for WLAN, when an Access Point exists	
Topology used with modern Ethernet standards	

Statement	
Cable failure can separate the network in two functioning parts	Mesh, Tree, Bus
Topology contains a single point of failure	Bus (the medium!), Ring (the medium!), Star, Cellular
Topology used for Thin Ethernet and Thick Ethernet	Bus
Topology contains a performance bottleneck	Star, Tree (the root!), Cellular
Topology used for WLAN, when no Access Point exists	Mesh
Topology used for Token Ring (logical)	Ring
Topology used for mobile phones (GSM standard)	Cellular
Topology used for Token Ring (physical)	Star
Cable failure leads to complete network failure	Ring, Bus
Topology contains no central component	
Topology used for WLAN, when an Access Point exists	
Topology used with modern Ethernet standards	

Statement	
Cable failure can separate the network in two functioning parts	Mesh, Tree, Bus
Topology contains a single point of failure	Bus (the medium!), Ring (the medium!), Star, Cellular
Topology used for Thin Ethernet and Thick Ethernet	Bus
Topology contains a performance bottleneck	Star, Tree (the root!), Cellular
Topology used for WLAN, when no Access Point exists	Mesh
Topology used for Token Ring (logical)	Ring
Topology used for mobile phones (GSM standard)	Cellular
Topology used for Token Ring (physical)	Star
Cable failure leads to complete network failure	Ring, Bus
Topology contains no central component	Bus, Ring, Mesh
Topology used for WLAN, when an Access Point exists	
Topology used with modern Ethernet standards	

Statement	
Cable failure can separate the network in two functioning parts	Mesh, Tree, Bus
Topology contains a single point of failure	Bus (the medium!), Ring (the medium!), Star, Cellular
Topology used for Thin Ethernet and Thick Ethernet	Bus
Topology contains a performance bottleneck	Star, Tree (the root!), Cellular
Topology used for WLAN, when no Access Point exists	Mesh
Topology used for Token Ring (logical)	Ring
Topology used for mobile phones (GSM standard)	Cellular
Topology used for Token Ring (physical)	Star
Cable failure leads to complete network failure	Ring, Bus
Topology contains no central component	Bus, Ring, Mesh
Topology used for WLAN, when an Access Point exists	Cellular
Topology used with modern Ethernet standards	

Statement	
Cable failure can separate the network in two functioning parts	Mesh, Tree, Bus
Topology contains a single point of failure	Bus (the medium!), Ring (the medium!), Star, Cellular
Topology used for Thin Ethernet and Thick Ethernet	Bus
Topology contains a performance bottleneck	Star, Tree (the root!), Cellular
Topology used for WLAN, when no Access Point exists	Mesh
Topology used for Token Ring (logical)	Ring
Topology used for mobile phones (GSM standard)	Cellular
Topology used for Token Ring (physical)	Star
Cable failure leads to complete network failure	Ring, Bus
Topology contains no central component	Bus, Ring, Mesh
Topology used for WLAN, when an Access Point exists	Cellular
Topology used with modern Ethernet standards	Star

10.1 What is the sender address for the first email sent to Germany?

- 10.2 The ISO/OSI reference model comprises seven layers (1-7). Sometimes computer scientists speak about layer 0 or layer 8. What is meant?
- 10.3 Would it be a good idea to deliver YouTube videos via broadcast?
- 10.4 Which of the following protocols have not been specified by the IETF? Why not?

- 10.1 What is the sender address for the first email sent to Germany?

 Laura Breeden

 Streeden & Streeden
- 10.2 The ISO/OSI reference model comprises seven layers (1-7). Sometimes computer scientists speak about layer 0 or layer 8. What is meant?
- 10.3 Would it be a good idea to deliver YouTube videos via broadcast?
- 10.4 Which of the following protocols have not been specified by the IETF? Why not?

- 10.1 What is the sender address for the first email sent to Germany?

 Laura Breeden

 Sreeden%csnet-sh.arpa@csnet-relay.csnet
 The mail was sent from BBN, Boston, to KIT, Karlsruhe.
- 10.2 The ISO/OSI reference model comprises seven layers (1-7). Sometimes computer scientists speak about layer 0 or layer 8. What is meant?

The wire resp. the user.

- 10.3 Would it be a good idea to deliver YouTube videos via broadcast?
- 10.4 Which of the following protocols have not been specified by the IETF? Why not?

- 10.1 What is the sender address for the first email sent to Germany?

 Laura Breeden

 Streeden%csnet-sh.arpa@csnet-relay.csnet

 The mail was sent from BBN, Boston, to KIT, Karlsruhe.
- 10.2 The ISO/OSI reference model comprises seven layers (1-7). Sometimes computer scientists speak about layer 0 or layer 8. What is meant?

The wire resp. the user.

- 10.3 Would it be a good idea to deliver YouTube videos via broadcast? No, because of the huge amount of unnecessary traffic.
- 10.4 Which of the following protocols have not been specified by the IETF? Why not?

- 10.1 What is the sender address for the first email sent to Germany?

 Laura Breeden

 Sreeden%csnet-sh.arpa@csnet-relay.csnet
 The mail was sent from BBN, Boston, to KIT, Karlsruhe.
- 10.2 The ISO/OSI reference model comprises seven layers (1 7). Sometimes computer scientists speak about layer 0 or layer 8. What is meant?

The wire resp. the user.

- 10.3 Would it be a good idea to deliver YouTube videos via broadcast? No, because of the huge amount of unnecessary traffic.
- 10.4 Which of the following protocols have not been specified by the IETF? Why not?
 - WIFI, Ethernet are specifications of the physical layer. The IETF works "above the wire and below the application".