Introduction

of the Lecture

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
oliver.hahm@fb2.fra-uas.de
https://teaching.dahahm.de

January 12, 2024

https://teaching.dahahm.de

Introduction
°

All exercises will follow this general schedule

Identify potential understanding problems
— Ask your questions
— Recap of the lecture

Address the understanding problems
— Answer your questions
— Repeat certain topics

Walk through the exercises/solutions — Some hints and guidance
— Work time or presentation of results

Recap of the Lecture
®0

You have seen ...

the and of and

the original of IPv4 networks, what and what are
how to connect to the Internet using

that IP datagrams can be if they are too big for a single

frame on the data link layer

why a successor for IPv4 was needed and how tackles the
challenges

Recap of the Lecture
oe

You have seen ...
the packet structure of

the packet structure of

Exercises
©000000000

An IPv4 address without a subnet mask is ambiguous

Tools like iputils (— ip) require the IPv4 address in CIDR notation

Eg.
ip addr add 192.168.7.3/24 dev wlan0

Reminder: CIDR notations specifies the number of masked bits
= /24 — 255.255.255.0

10.1.2.3/24 is different from 10.1.2.3/161

1Both addresses cannot be used in the same network.

Exercises
©000000000

An IPv4 address without a subnet mask is ambiguous

Tools like iputils (— ip) require the IPv4 address in CIDR notation
Eg.
ip addr add 192.168.7.3/24 dev wlan0
Reminder: CIDR notations specifies the number of masked bits
= /24 — 255.255.255.0

10.1.2.3/24 is different from 10.1.2.3/161

00001010 00000001 00000010 00000011 AND
111111141 11111111 11111111 00000000
versus

00001010 00000001 00000010 00000011 AND
11111111 11111111 00000000 00000000

1Both addresses cannot be used in the same network.

Exercises
©000000000

An IPv4 address without a subnet mask is ambiguous

Tools like iputils (— ip) require the IPv4 address in CIDR notation
Eg.
ip addr add 192.168.7.3/24 dev wlan0
Reminder: CIDR notations specifies the number of masked bits
= /24 — 255.255.255.0

10.1.2.3/24 is different from 10.1.2.3/161
00001010 00000001 00000010 00000011 AND
11111111 11111111 11111111 00000000
Versus
00001010 00000001 00000010 00000011 AND
11111111 11111111 00000000 00000000

Subnet masks are often multiples of eight bits, but not always
e.g., 10.21.42.83/28

1Both addresses cannot be used in the same network.

Exercises
©000000000

An IPv4 address without a subnet mask is ambiguous

Tools like iputils (— ip) require the IPv4 address in CIDR notation

Eg.
ip addr add 192.168.7.3/24 dev wlan0

Reminder: CIDR notations specifies the number of masked bits
= /24 — 255.255.255.0

10.1.2.3/24 is different from 10.1.2.3/161

00001010 00000001 00000010 00000011 AND
111111141 11111111 11111111 00000000
versus

00001010 00000001 00000010 00000011 AND
11111111 11111111 00000000 00000000

Subnet masks are often multiples of eight bits, but not always
e.g., 10.21.42.83/28

What's the subnet mask for this address?

1Both addresses cannot be used in the same network.

Exercises
©000000000

An IPv4 address without a subnet mask is ambiguous

Tools like iputils (— ip) require the IPv4 address in CIDR notation
Eg.

ip addr add 192.168.7.3/24 dev wlan0

Reminder: CIDR notations specifies the number of masked bits

= /24 — 255.255.255.0

10.1.2.3/24 is different from 10.1.2.3/161
00001010 00000001 00000010 00000011 AND
11111111 11111111 11111111 00000000
Versus
00001010 00000001 00000010 00000011 AND
11111111 11111111 00000000 00000000

Subnet masks are often multiples of eight bits, but not always
e.g., 10.21.42.83/28

What's the subnet mask for this address?
/28 — 11111111 11111111 11111111 11110000 — 255.255.255.240

1Both addresses cannot be used in the same network.

Exercises
©000000000

An IPv4 address without a subnet mask is ambiguous

Tools like iputils (— ip) require the IPv4 address in CIDR notation
Eg.

ip addr add 192.168.7.3/24 dev wlan0

Reminder: CIDR notations specifies the number of masked bits

= /24 — 255.255.255.0

10.1.2.3/24 is different from 10.1.2.3/161
00001010 00000001 00000010 00000011 AND
11111111 11111111 11111111 00000000
Versus
00001010 00000001 00000010 00000011 AND
11111111 11111111 00000000 00000000

Subnet masks are often multiples of eight bits, but not always
e.g.,, 10.21.42. 83/28
What's the subnet mask for this address?

/28 — 11111111 11111111 11111111 11110000 — 255.255.255.240
What's the network address?

1Both addresses cannot be used in the same network.

Exercises
©000000000

An IPv4 address without a subnet mask is ambiguous

Tools like iputils (— ip) require the IPv4 address in CIDR notation
Eg.
ip addr add 192.168.7.3/24 dev wlan0
Reminder: CIDR notations specifies the number of masked bits
= /24 — 255.255.255.0

10.1.2.3/24 is different from 10.1.2.3/161

00001010 00000001 00000010 00000011 AND
111111141 11111111 11111111 00000000
versus

00001010 00000001 00000010 00000011 AND
11111111 11111111 00000000 00000000

Subnet masks are often multiples of eight bits, but not always
e.g.,, 10.21.42. 83/28
What's the subnet mask for this address?
/28 — 11111111 11111111 11111111 11110000 — 255.255.255.240
What's the network address?
10.21.52.80/28

1Both addresses cannot be used in the same network.

Exercises
0®00000000

The OS uses a (or)
to select the appropriate interface for sending a packet

The is the destination IP address of the outgoing (or
forwarded) packet
The FIB contains at least two columns:

The destination
The

Optionally it may contain a

The OS performs a on the selector

Exercises
00®0000000

The longest (best) matching prefix from the FIB is chosen

The destination IP address is compared bit by bit with the network
addresses in the FIB

The number of compared bits depends on the prefix length of the FIB

entry

The longest matching prefix is selected and the according interface will
be chosen

There is typically a entry (0.0.0.0/0 for IPv4) that always

matches

Exercises
000@000000

On Linux you can query your routing table with iputils
(— ip route show or simply ip r)

On Windows and Linux you can also use netstat -r[n]

The result may look like this:

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface
default 10.51.0.1 0.0.0.0 UG 00 0 wlanO
10.2.0.0 0.0.0.0 255.2556.255.0 U 00 0 enp0s31f6
10.51.0.0 0.0.0.0 255.255.0.0 U 00 0 wlanO
192.168.0.0 0.0.0.0 255.252.0.0 U 00 0 wlanO

Exercises
0000®00000

IP address 172.21.240.90 10101100 00010101 11110000 01011010
Class B 255.255.0.0 11111111 11111111 00000000 00000000
Subnet mask 255.255.255.224 11111111 11111111 11111111 11100000

Exercises
0000®00000

IP address 172.21.240.90 10101100 00010101 11110000 01011010
Class B 255.255.0.0 11111111 11111111 00000000 00000000
Subnet mask 255.255.255.224 11111111 11111111 11111111 11100000

Subnet ID 1922 16161+1060—00661616+ 11110000 01006000

Exercises
0000®00000

IP address 172.21.240.90 10101100 00010101 11110000 01011010
Class B 255.255.0.0 11111111 11111111 00000000 00000000
Subnet mask 255.255.255.224 11111111 11111111 11111111 11100000
Subnet ID 1922 16161+1060—00661616+ 11110000 01006000

IP address AND (NOT subnet mask) = host ID

IP address 172.21.240.90 10101100 00010101 11110000 01011010
Subnet mask 255.255.255.224 11111111 11111141 11111111 11100000
Inverse subnet mask | 000.000.000.31 00011111

Host ID 26 00611010

Introduction of the Lecture Exercist

[e]e]e]e]e] le]elele)

,, The checksum field is the 16 bit one’s complement of the one’s complement sum of all 16 bit
words in the header. For purposes of computing the checksum, the value of the checksum field is
zero".

To calculate the checksum of the packet, the sum of each 2 byte word inside the header
must be calculated. The checksum field itself is skipped here!

4500 + 0034 + B612 + 4000 + 4006 + OAOO + 008B + 5BC6 + AEEO = 2907D

Next, the result of the calculation is converted to binary:

2907D = 10 1001 0000 0111 1101

The first two bits are the carry and need to be added to the rest of the value:

10 + 1001 0000 0111 1101 = 1001 0000 0111 1111

Next, every bit of the result is flipped to obtain the checksum:
1001 0000 0111 1111
=> 0110 1111 1000 0000

The result 0110 1111 1000 0000 is equal to the value 6F80 in hexadecimal notation, as
already shown in the original IP packet header.

Exercises
0000008000

To verify a checksum, the same procedure is used as above, with a single exception: The
original header checksum is not omitted.
4500 + 0034 + B612 + 4000 + 4006 + 6F80 + OAOO + 008B + 5BC6 + AEEO = 2FFFD

Next, the result of the calculation is converted to binary:
2FFFD — 10 1111 1111 1111 1101

The first two bits are the carry and need to be added to the rest of the value:
10 + 1111 1111 1111 1101 = 1111 1111 1111 1111

Next, every bit of the result is flipped:
1111 1111 1111 1111
=> 0000 0000 0000 0000

This indicates: No error detected! Any result, which is # 0 indicates: Error!

Source: RFC 791 and Wikipedia

Exercises
0000000800

Private addresses (unique local addresses in IPv6)
“have no global meaning’'?
“routing information [...] shall not be propagated”? in the Internet, and
“packets with private source or destination addresses should not be
forwarded"?

May be forwarded inside a LAN (— link-local addresses are never forwarded)

Edge routers ideally filter traffic using address from private address space

2RFC 1918

Exercises
0000000800

Private addresses (unique local addresses in IPv6)
“have no global meaning’'?
“routing information [...] shall not be propagated”? in the Internet, and
“packets with private source or destination addresses should not be
forwarded"?

May be forwarded inside a LAN (— link-local addresses are never forwarded)

Edge routers ideally filter traffic using address from private address space

user@host> ping -b 10.0.34.255

PING 10.0.34.0 (10.0.34.0) from 10.0.34.197 : 56(84) bytes of data.
64 bytes from 10.0.34.197: icmp_seq=1 ttl=64 time=0.049 ms

64 bytes from 10.0.34.236: icmp_seq=1 tt1=255 time=0.163 ms (DUP!)
64 bytes from 10.0.34.206: icmp_seq=1 tt1=255 time=0.211 ms (DUP!)
64 bytes from 10.0.34.196: icmp_seq=1 tt1=255 time=0.213 ms (DUP!)
64 bytes from 10.0.34.181: icmp_seq=1 tt1=255 time=0.220 ms (DUP!)
64 bytes from 10.0.34.174: icmp_seq=1 tt1=255 time=0.243 ms (DUP!)
64 bytes from 10.0.34.133: icmp_seq=1 tt1=255 time=0.245 ms (DUP!)

O O O O OO

2RFC 1918

Exercises
0000000080

Any router can fragment (unless the DF bit is not set)

Only the receiver reassembles

In 1Pv4:
Any router “must be able to forward a datagram of 68 octets without
further fragmentation3

Any host “must be able to receive a datagram of 576 octets either in
one piece or in fragments to be reassembled’3

“IPv6 requires that every link in the internet have an MTU of 12804
octets or greater

3RFC 791
4RFC 2460

Exercises
000000000e

No. Time Source. Destination Protocol Length Info
31.686621 192.168.12.192 192.168.1.102 B pro(o(ol X 02 W e M I
10 102.168.1.192 91 source scp- e etynetp
51.686874 192.168.1.102 192.168.12.192 Toud 1508 Fragnented 1P protocol (protosube 17, off0, Tors0s) [Reassenbled in #e)
61.686891 192.168.1.192 192.168.12.192 o 91 Source port: safetynetp Destination port: scp-conf

o Frame 4: 51 bytes on wire (728 bits), 91 bytes captured (728 b

Echernet 17, Src; bS:caidaisti2dia2 (b8:caidarsfiadidn), bst: InSpurEl13:7ei0b (6cio2:bfii3iveioh)

5 Internet Protocol Version 4, stc: 10.55.205.215 (10.55.205.215), 10.55.205.228 (10.55.205.228)
fon: 4

Header length: 20 bytes

@ Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: OX00: NOT-ECT (Not ECN-Capable Transport))

: 77
Identification: Ox43lb (17179)

Fragnent offset: 0
Time to Tive: 6
Protocol: UDP (17)
@ Header checksum: 0x875b [correct]
source: 10.55.205.215 (10.55.205.215)
Destination: 10.55.205.228 (10.55.205.228)
[source Georp: Unknown]
[Destination GeoIp: unknown]
user Datagram Protocol, Src Por
virtual extensible Local Area Networl
Ethernet II, Src: a2:36:11:af:b9:aé (a2:36:11:af:b9:a4), Dst: b2:8b:8e:60:e6:b9 (b2:8b:8e:60:e6:b9)
S Internet Protocol version 4, src: 192.168.12.192 (192.168.12.192), Dst: 192.168.1.192 (192.168.1.192)
- Version: 4

53834 (53834), Dst Port: otv (8472)
rk

Header length: 20 bytes
@ Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: OXO
Tota
Identification: 0x02ba (698)
® Flags: 0x00
Fragnent offset: 1424

NOT-ECT (Not ECN-Capable Transport))

2795 [correct]
Source: 102.168,12.102 (100.165.12.192)
Destination: 192.168.1.192 (192.168.1.192)
[source GeoTp: Unknown]
[Destination GeoTp: uUnknown]
[2 1pv4 Fragments (1431 bytes

3. payload: 0-1423 (14

#3(1424), #3(7)]
24 bytes

Fragment _count
[Reassembled Ipv4 length: 1431]
® User Datagram Protocol, Src Port: scp-config (10001), Dst Port: safetynetp (40000)

= [pata (1423 bytes)

Source: https://hustcat.github.io/

	Introduction
	Recap of the Lecture
	Exercises

