Prof. Dr. Oliver Hahm
Computer Networks (WS 23/24)

Faculty of Computer Science and Engineering Frankfurt University of Applied Sciences

Exercise Sheet 5

Exercise 1 (IPv4 Addressing in the Network Layer)

Calculate for each subtask of this exercise the first and last host addresses, the network address and the broadcast address of the subnet.

IP Address:	151.175.31.100	10010111.10101111 .00011111 .01100100
Subnet mask:	255.255 .254 .0	11111111.11111111 .11111110 .00000000
Network address?		
First host address?		
Last host address?		
Broadcast address?		
IP Address:	151.175.31.100	10010111.10101111 .00011111 .01100100
Subnet mask:	255.255.255.240	1111111.11111111 .11111111 .11110000
Network address?		
First host address?		
Last host address?		
Broadcast address?		
IP Address:	151.175.31.100	10010111.10101111 .00011111 .01100100
Subnet mask:	255.255 .255 .128	11111111.11111111 .11111111 .10000000
Network address?	-------------	
First host address?		
Last host address?		
Broadcast address?		

Exercise 2 (Inter-Networking)

1. Calculate for the subnet ID of sender and receiver and specify whether the IP packet leaves the subnet during transmission or not for the following two examples

- Subnet ID of sender?
- Subnet ID of receiver?
- Does the IP packet leave the subnet [yes/no]?

Prof. Dr. Oliver Hahm Computer Networks (WS 23/24)

Faculty of Computer Science and Engineering Frankfurt University of Applied Sciences
b) Sender:
00001111.11001000 .01100011 .00010111
15.200.99.23

Subnet mask:
11111111.11000000.00000000.00000000 255.192.0.0

Receiver: 00001111.11101111 .00000001 .00000001
15.239.1.1

Subnet mask: 11111111.11000000.00000000.00000000 255.192.0.0

- Subnet ID of sender?
- Subnet ID of receiver?
- Does the IP packet leave the subnet [yes/no]?

2. The forwarding table of a computer (Windows or Unix) can be queried with the command netstat -rn. An exemplary output may look like this:

Kernel IP routing table
Destination Gateway Genmask MSS Window irtt Iface
0.0.0.0 10.2.0.1 0.0.0.0 UG 0000 eth0
10.2.0.0 0.0.0.0 255.255.255.0 U $0 \quad 0 \quad 0$ eth1
10.204.0.0 0.0.0.0 255.252.0.0 U $0 \quad 0 \quad 0$ wlan0
10.200.0.0 0.0.0.0 255.248.0.0 U $0 \quad 0 \quad 0$ eth2
172.17.8.15 0.0.0.0 255.255.255.255 UH 0000 eth2
192.168.23.0 0.0.0.0 255.255.255.0 U $0 \quad 0 \quad 0$ wlan1
192.168.42.0 0.0.0.0 255.255.255.240 U $0 \quad 0 \quad 0$ eth3

Specify the particular interface the kernel will choose for each destinations with following IPv4 addresses and explain why:
a) 192.168 .23 .14
b) 192.168 .42 .17
c) 192.168 .42 .15
d) 10.2 .0 .255
e) 10.207 .51 .4
f) 172.17 .8 .18
g) 172.17.8.15
h) 10.202 .4 .3
i) 10.216 .168 .23

Exercise 3 (Subnetting)

Calculate for each subtask of this exercise the subnet masks and answer the questions.

1. Split the class C network 195.1.31.0 for implementing 30 subnets.

Network ID: 11000011.00000001.00011111.00000000 195.1.31.0
Number of bits for subnet IDs?

Number of bits for host IDs?
Number of host IDs per subnet?
2. Split the class A network 15.0.0.0 for implementing 333 subnets.

Network ID: 00001111.00000000.00000000.00000000 15.0.0.0
Number of bits for subnet IDs?

Number of bits for host IDs?
Number of host IDs per subnet?
3. Split the class B network 189.23.0.0 for implementing 20 subnets.

Network ID: 10111101.00010111.00000000.00000000 189.23.0.0
Number of bits for subnet IDs?
Subnet mask:
Number of bits for host IDs?
Number of host IDs per subnet?
4. Split the class C network 195.3.128.0 into subnets, which contain 17 hosts each.

Network ID: 11000011.00000011.10000000.00000000 195.3.128.0
Number of bits for host IDs?
Number of bits for subnet IDs?
Number of possible subnets?
Subnet mask: \qquad
\qquad
\qquad
\qquad
\qquad
5. Split the class B network 129.15.0.0 into subnets, which contain 10 hosts each.

Network ID: 10000001.00001111.00000000.00000000 129.15.0.0
Number of bits for host IDs?
Number of bits for subnet IDs?
Number of possible subnets?
Subnet mask: \qquad

Prof. Dr. Oliver Hahm Computer Networks (WS 23/24)

Exercise 4 (Checksums in IP Packets)

The figure shows the structure of IPv 4 packets as discussed in the computer networks course.

32 bits (4 bytes)
 Version IHL Differentiated services Identification Flags Time To Live Fral length Srotocol ID Header checksum Source Address Optination Address / Padding Payload

The given data in hexadecimal notation is a truncated excerpt of an IP packet:
45000034 B612 40004006 6F80 0A00 008B 5BC6 AEEO
The data contains the values of the fields of the IP packet header.

4	$=$ Version
5	$=$ IHL $=$ IP Header Length $(\Longrightarrow 5 * 4$ Byte words $=20$ bytes $)$
00	$=$ Differentiated services
0034	$=$ Total length $(\Longrightarrow 52$ bytes $)$
B612	Identification
4000	$=$ Flags + Fragment offset
40	
06	Time To live $(\Longrightarrow 62$ hops $)$
06	Protocol ID $(\Longrightarrow$ TCP $)$
6F80	$=$ Header Checksum
OA00 008B	$=$ IP address (sender)
5BC6 AEE0	$=$ IP address (destination $)$

1. Calculate the checksum for each IP header:

- 45000034 4C22 4000 F706 ???? C163 9055 OA00 008B
- 45000034 671E 40004006 ???? OA00 008b C163 9055
- 4500 00F2 000040004011 ???? OAOO 008b OAOO OOFF

2. Verify the checksum of each IP header:

- 45000034 02FD 40003606 276C 6CAO A330 OAOO 008B
- 4500 00E7 02FC 40003606 37BC 6CAO A330 OA00 008B
- 45000034 A9D5 40004006 814E OA00 008B adC2 4613

Prof. Dr. Oliver Hahm Computer Networks (WS 23/24)

Faculty of Computer Science and Engineering Frankfurt University of Applied Sciences

Exercise 5 (Network Address Translation)

The figure below describes a NAT scenario. Fill the missing IP addresses and port numbers into the figure when device B sends a request to an web server process that runs on server A that can be accessed at port number 443.

Exercise 6 (Address Types and Spaces)

1. Name the three private $\operatorname{IPv} 4$ address spaces.
2. What is the prefix for a link-local address in IPv4 and IPv6 networks?
3. Which of the following $\operatorname{IPv} 4$ addresses are multicast addresses?222.1.2.3224.1.2.3242.0.0.0234.23.23.23
4. How can an IPv6 anycast address be distinguished from a unicast or a multicast address?

Prof. Dr. Oliver Hahm
Computer Networks (WS 23/24)

Faculty of Computer Science and Engineering Frankfurt University of Applied Sciences
5. Which IPv6 address can you use in order to ping all stations in a local network?
6. What type of address is given with $\mathrm{fd} 04: 2342: 0815: 1: 6770: 37 \mathrm{ca}: 7 \mathrm{a} 5 \mathrm{c}: f 408 / 64$? What is its purpose?
7. What type of address is given with $f f 02:: 1: f f 5 c: f 408$? What is its purpose?

Exercise 7 (Fragmenting IP Packets)

4,000 bytes payload need to be transmitted via the IP protocol. The payload must be fragmented, because it is transmitted over multiple physical networks, whose MTU is $<4,000$ bytes. Display graphically the way, the payload is fragmented, and how many bytes of payload each fragment contains.

	LAN A	LAN B	LAN C	LAN D	LAN E
Network technology	Ethernet	PPPoE	ISDN	Ethernet	WLAN
MTU [bytes]	1,500	1,492	576	1,400	2,312
IP-Header [bytes]	20	20	20	20	20
maximum payload [bytes]	1,480	1,472	556	1,380	2,292

Display graphically the way, the payload is fragmented, and how many bytes of payload each fragment contains.

Exercise 8 (IPv6 Address Representation)

1. Simplify these IPv6 addresses:

- 1080:0000:0000:0000:0007:0700:0003:316b

Solution: \qquad

- 2001:0db8:0000:0000:f065:00ff:0000:03ec

Solution: \qquad

- 2001:0db8:3c4d:0016:0000:0000:2a3f:2a4d

Solution: \qquad

- 2001:0c60:f0a1:0000:0000:0000:0000:0001

Solution: \qquad

Prof. Dr. Oliver Hahm
Computer Networks (WS 23/24)

Faculty of Computer Science and Engineering Frankfurt University of Applied Sciences

- 2111:00ab:0000:0004:0000:0000:0000:1234

Solution: \qquad
2. Provide all positions of these simplified IPv6 addresses:

- 2001::2:0:0:1

Solution: \qquad :____: :___: _-_--_-_ : -_-_ : _-_--_-_

- 2001:db8:0:c::1c

Solution: \qquad :- \qquad :___-- -- \qquad : \qquad : \qquad :___-

- 1080::9956:0:0:234

Solution: \qquad :____: :___-:___-: \qquad : \qquad :____: -_-_

- 2001:638:208:ef34::91ff:0:5424

Solution: \qquad :____: :___-: :____: \qquad :___-: :____: :-_-

- 2001:0:85a4::4a1e:370:7112

Solution: \qquad :____: :___-: :__-_: \qquad : \qquad :____: :-_-

Exercise 9 (Do some research)

1. The transition from $\operatorname{IPv} 4$ to $\operatorname{IPv} 6$ may indicate that one IP version number has been skipped. What happened to $\mathbf{I P v 5}$?
2. Explain the meaning of the fields Flags, MSS, Window, and irtt in the forwarding table as shown in task 2 .
3. In IPv6 different scopes are defined. Figure out which of the originally defined scopes has been declared as deprecated (and why).
4. Describe the purpose of the following address blocks:

- 192.0.2.0/24
- 198.51.100.0/24
- 203.0.113.0/24

