Distributed Systems

Distributed Systems

Distributed Transactions

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
oliver.hahm@fb2.fra-uas.de
https://teaching.dahahm.de

30.06.2023

. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

https://teaching.dahahm.de

Distributed Systems

Motivation

Particular problem for the development of distributed applications:

Partial Failure Property

m Failure of single components in a distributed system

= Complex error conditions in distributed applications

Motivation for transactions

m Atomic actions as generalization of the transaction concept of
databases

m Reducing the complexity for the application developer in the presence
of errors and concurrency

m Automatic backward error recovery, combination with forward error
recovery possible

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 2/44

Distributed Systems

Agenda

B Transaction Concept

B Site Local Commit Protocols
m Intention Lists
m Shadowing
m Write-Ahead Logging (WAL)

I Two-Phase Commit Protocol

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 3/44

Distributed Systems
[

Transaction Concept

Agenda

B Transaction Concept

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Ti

sactions — SS 23 4/44

Distributed Systems
LTransaction Concept

Transaction Concept

A transaction is a series of actions (i.e., operation on resources) with ACID

properties.

m Atomicity:
m Transaction is either executed completely or appears as never started
m No intermediate result in between start and final state gets visible

. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems
LTransaction Concept

Transaction Concept

A transaction is a series of actions (i.e., operation on resources) with ACID

properties.

m Atomicity:
m Transaction is either executed completely or appears as never started
m No intermediate result in between start and final state gets visible

m Consistency:
m A transaction takes the system from one consistent state into another

consistent state
m No application constraints is violated

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems
LTransaction Concept

Transaction Concept

A transaction is a series of actions (i.e., operation on resources) with ACID

properties.

m Atomicity:
m Transaction is either executed completely or appears as never started
m No intermediate result in between start and final state gets visible

m Consistency:
m A transaction takes the system from one consistent state into another

consistent state
m No application constraints is violated

m Isolation:
m Each transaction must be performed without interference from other

transactions

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems
LTransaction Concept

Transaction Concept

A transaction is a series of actions (i.e., operation on resources) with ACID

properties.

m Atomicity:
m Transaction is either executed completely or appears as never started
m No intermediate result in between start and final state gets visible
m Consistency:
m A transaction takes the system from one consistent state into another
consistent state
m No application constraints is violated
m Isolation:
m Each transaction must be performed without interference from other
transactions
m Durability:
m The effects of a completed transaction do not get lost

(even in case of any (allowed) error wrt the error model)
Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 5/44

Distributed Systems

L Transaction Concept

Local and Distributed Transactions

State diagram
Local transaction

m Effects are restricted to a
single computer system

commit

. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems

L Transaction Concept

Local and Distributed Transactions

State diagram
Local transaction

m Effects are restricted to a
single computer system

commit

Distributed transaction ?

m Effect to multiple sites of a .
distributed system to be developed

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems

L Transaction Concept

Failure Model — Abort and Site Failure

A failure model describes all anticipated failures to which a system reacts
gracefully. All other failures are considered a disaster.

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems
LTransaction Concept

Failure Model — Abort and Site Failure

Definition
A failure model describes all anticipated failures to which a system reacts
gracefully. All other failures are considered a disaster.

Transaction abort:
m Aborting single transactions, e. g., by ...
m explicit user aborts
m errors in the application logic
m as a consequence of a deadlock resolution

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 7/44

Distributed Systems
LTransaction Concept

Failure Model — Abort and Site Failure

Definition

A failure model describes all anticipated failures to which a system reacts

gracefully. All other failures are considered a disaster.

Transaction abort:
m Aborting single transactions, e. g., by ...
m explicit user aborts
m errors in the application logic
m as a consequence of a deadlock resolution

Site failure:

m Failure of a participating system, e. g., by ...
m transient or permanent hardware failures (including power outage)

m crash of the OS with reboot
m All running processes crash
m All transactions in state active change to state aborted

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems

LTransaction Concept

Failure Model — Media Failure and Communication Failure

Media failure:

m Non-recoverable error on non-volatile storage medium used while
processing the tranactions, e. g. ...

m Hard disc (used for storing data)
m Tape (used for logging)

m Standard treatment by using stable storage (redundant storage on
multiple media, e. g., mirror disks, RAID, ...)

m QOut of scope for this lecture

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 8/44

Distributed Systems

LTransaction Concept

Failure Model — Media Failure and Communication Failure

Media failure:

m Non-recoverable error on non-volatile storage medium used while
processing the tranactions, e. g. ...

m Hard disc (used for storing data)
m Tape (used for logging)

m Standard treatment by using stable storage (redundant storage on
multiple media, e. g., mirror disks, RAID, ...)

m QOut of scope for this lecture
Communication failure:
m Errors of the messaging system which lead to the loss of messages

m Partitioning: Network disintegration into multiple isolated subnetworks

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 8/44

Distributed Systems

L Transaction Concept

Flat Transactions

Flat transactions

m Traditional model used in database
context

m Transaction involves a set of objects
(resources)

m Transactions may share objects
(regulated by concurrency control
mechanisms)

involved objects

m Transactions cannot be nested

. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems

LTransaction Concept

Flat Transactions

Flat transactions
m Traditional model used in database
context | atomic | | atomic |

m Transaction involves a set of objects
(resources)

m Transactions may share objects
(regulated by concurrency control
mechanisms)

involved objects

m Transactions cannot be nested

= Disadvantage: No possibility to store intermediate results

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 9/44

Distributed Systems
LTransaction Concept

Nested Transactions

m A transaction may include inner transactions (subtransactions)

m Isolated resettability of inner transactions: abort of an inner
transaction results is an exception (not abort!) of higher-level
transaction

m Abort of a transaction results in
the abort of all inner
transactions

m Commitment is relative to the
parent transaction (final when the
top-level transaction commits)

Top level
transaction

m Concurrency control at each
nesting layer

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 10/44

Distributed Systems
[

Site Local Commit Protocols

Agenda

B Site Local Commit Protocols
m Intention Lists
m Shadowing
m Write-Ahead Logging (WAL)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 11/44

Distributed Systems

LSite Local Commit Protocols

Site Local Commit Protocols

Protocols to achieve local atomicity in failure cases and persistent effects:
m Intention Lists (Lampson 1981)
m Shadowing (Gray 1981)
m Write-Ahead Logging (WAL)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 12/44

Distributed Systems
[

Site Local Commit Protocols

L Intention Lists

Agenda

B Site Local Commit Protocols
m Intention Lists

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 13/44

Distributed Systems
LSite Local Commit Protocols
L Intention Lists

Intention lists

Procedure
m Intended changes on data base objects are collected in a list (i. e.,
executed on copies of the original data)
m The list is written into stable memory

m Decision is made (committed-aborted)

On aborted Discard list
On committed Update originals of the object in non-volatile memory

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 14/44

Distributed Systems
LSite Local Commit Protocols

L Intention Lists

Intention lists

Procedure

m Intended changes on data base objects are collected in a list (i. e.,
executed on copies of the original data)

m The list is written into stable memory

m Decision is made (committed-aborted)

On aborted Discard list
On committed Update originals of the object in non-volatile memory

In distributed systems
m Each node maintains a tentative list and knows the coordinator
m A coordinator maintains a list of all nodes and notifies these

m Notified nodes update the objects according to their list and delete it

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 14/44

Distributed Systems
[

Site Local Commit Protocols
LShad«:xwing

Agenda

B Site Local Commit Protocols

m Shadowing

. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems

LSite Local Commit Protocols
LShaduwing

Procedure

m Assumes non-volatile memory as tree structure with reference blocks (cf.
UNIX file system)

m Create after images of all blocks as shadow version up to the root node

m Make decision (committed-aborted) by atomic pointer swap at root block
(writing a block)

On aborted Discard shadow structure
On committed Release former original blocks,
shadow blocks become the original ones

On site failure

m Either old or new state is established

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

16/44

Distributed Systems

LSite Local Commit Protocols
LShaduwing

Procedure

m Assumes non-volatile memory as tree structure with reference blocks (cf.
UNIX file system)

m Create after images of all blocks as shadow version up to the root node

m Make decision (committed-aborted) by atomic pointer swap at root block
(writing a block)

On aborted Discard shadow structure Y e
On committed Release former original blocks,
shadow blocks become the original ones

On site failure

m Either old or new state is established

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

16/44

Distributed Systems
LSite Local Commit Protocols
LShaduwing

Pros & Cons

Advantages

m Atomic state change by writing the root block
Drawbacks

m No concurrency of commit processes

m Physical alignment of data blocks may get lost on commit since
shadow blocks are from the free list

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

17/44

Distributed Systems
[

Site Local Commit Protocols
L Write-Ahead Logging (WAL)

Agenda

B Site Local Commit Protocols

m Write-Ahead Logging (WAL)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 18/44

Distributed Systems
LSite Local Commit Protocols
L Write-Ahead Logging (WAL)

Basics of Logging

m A log consists of a sequence of so called log records

m Each record of variable lengths is identified by a log sequence number (LSN)
— Byte offset in log stream (analog to TCP sequence numbers)

The log is shared among processes on a node

Linking of related log entries of a commit process

Realization of the log in replicated files (stable memory)

Superordinate table with all log entries and SQL access is common

Block structure of the medium

IR e) e

LSN 1000 2000 3800 4000 5000 7000 700 7400

older write direction— younger

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 19/44

Distributed Systems
LSite Local Commit Protocols
L Write-Ahead Logging (WAL)

WAL: Writing, Reading, and Shortening

Writing of log entries
m Only sequential writing of log files (high performance)
m Buffered writing of log entries in main memory

m Forced write of a log entry enforces storage of all preceding log
entries (with smaller LSN) and return from operation after a block has
been physically stored on the medium

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 20/44

Distributed Systems
LSite Local Commit Protocols
L Write-Ahead Logging (WAL)

WAL: Writing, Reading, and Shortening

Writing of log entries
m Only sequential writing of log files (high performance)
m Buffered writing of log entries in main memory

m Forced write of a log entry enforces storage of all preceding log
entries (with smaller LSN) and return from operation after a block has
been physically stored on the medium

Reading of log entries

m Only in case of site failures and potentially on transaction failures (see
below)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 20/44

Distributed Systems
LSite Local Commit Protocols
L Write-Ahead Logging (WAL)

WAL: Writing, Reading, and Shortening

Writing of log entries
m Only sequential writing of log files (high performance)
m Buffered writing of log entries in main memory

m Forced write of a log entry enforces storage of all preceding log
entries (with smaller LSN) and return from operation after a block has
been physically stored on the medium

Reading of log entries

m Only in case of site failures and potentially on transaction failures (see
below)

Log shortening

m Log can get arbitrarily long, but the duration for the restart after a site
failure has to be limited

m Use of checkpoints
Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 20/44

Distributed Systems
LSite Local Commit Protocols
L Write-Ahead Logging (WAL)

WAL: Local Commits and Protocol

Use of log entries as part of the local commitment

m Log records for each transaction are linked among themselves

m Writing of before images (undo records) for all objects whose
persistent original object state is changed during the transaction
(update in place)

m Writing of after images (redo records) for all achieved final object
states of the transaction

m Store the final outcome record via forced write:

m Enforces storage of all related log entries
m Upon appearance in the log, the commitment is complete
m May be realized as a flag in the last block

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 21/44

Distributed Systems
LSite Local Commit Protocols
L Write-Ahead Logging (WAL)

WAL: Local Commits and Protocol

Use of log entries as part of the local commitment
m Log records for each transaction are linked among themselves
m Writing of before images (undo records) for all objects whose
persistent original object state is changed during the transaction
(update in place)
m Writing of after images (redo records) for all achieved final object
states of the transaction
m Store the final outcome record via forced write:
m Enforces storage of all related log entries
m Upon appearance in the log, the commitment is complete
m May be realized as a flag in the last block
Write-Ahead Logging Protocol
m Secured writing of log records before modification of the original
persistent state

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 21/44

Distributed Systems
LSite Local Commit Protocols
L Write-Ahead Logging (WAL)

Write-Ahead Logging: Error Handling

Handling of transaction failures
m (Potentially) create and store “aborted” outcome record

m If before records has been written, their content has to be
re-established as persistent object state

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 22/44

Distributed Systems
LSite Local Commit Protocols
L Write-Ahead Logging (WAL)

Write-Ahead Logging: Error Handling

Handling of transaction failures
m (Potentially) create and store “aborted” outcome record
m If before records has been written, their content has to be
re-established as persistent object state
Handling of site failures
m Read the log
m For each transaction which has not yet been completed, establish
before image (if existing)
m For all transactions with an existing “committed” outcome record
establish the last after image in each case of all objects (at some point)
— idempotence

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 22/44

Distributed Systems
LSite Local Commit Protocols
L Write-Ahead Logging (WAL)

Advantages of WAL

m Several interlocked commit operations can take place simultaneously

m High 1/O performance through buffering and sequential writing of
logs

m Data block alignment of the persistent state remains unchanged
(update in place)

m Parallelization of logs is possible

m After site failures and subsequent restart only the log has to be
analyzed

m Log can be shared by commit protocols

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 23/44

Distributed Systems
[

Two-Phase Commit Protocol

Agenda

I Two-Phase Commit Protocol

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 24 /44

Distributed Systems

L Two-Phase Commit Protocol

Commit Protocols

m Are used to coordinate a commit/abort decision of a set of processes in
an distributed environment

m E. g., to enforce atomicity in failure cases and durability for distributed
transaction environments

m Special cases of the so called consensus protocols (— yes/no)

. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems

LTwofPhase Commit Protocol

Commit Protocols

m Are used to coordinate a commit/abort decision of a set of processes in
an distributed environment

m E. g., to enforce atomicity in failure cases and durability for distributed
transaction environments

m Special cases of the so called consensus protocols (— yes/no)
Two Phase Commit Protocol

m Most commonly used protocol

m Very high practical relevance and used in multiple products
Theoretical background

m Multiphase commit protocols (e. g., Skeen, 1981)

m Weak/strong termination conditions lead to blocking/non-blocking
commit algorithms

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems
[

Two-Phase Commit Protocol

Properties of a Commit Algorithm

A commit algorithm for a set of processes provides the following
properties:

All processes which make a decision make the same decision

. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems

L Two-Phase Commit Protocol

Properties of a Commit Algorithm

A commit algorithm for a set of processes provides the following
properties:

All processes which make a decision make the same decision

Once a decision has been made, it is binding for any process and
cannot be revoked

. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems

L Two-Phase Commit Protocol

Properties of a Commit Algorithm

A commit algorithm for a set of processes provides the following
properties:

All processes which make a decision make the same decision

Once a decision has been made, it is binding for any process and
cannot be revoked

Only if all processes decide for commit the common decision is
commit

= As soon as one process decides on abort the common decision must
be abort

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 26/44

Distributed Systems

LTwofPhase Commit Protocol

Properties of a Commit Algorithm

A commit algorithm for a set of processes provides the following
properties:
All processes which make a decision make the same decision

Once a decision has been made, it is binding for any process and
cannot be revoked

Only if all processes decide for commit the common decision is
commit

= As soon as one process decides on abort the common decision must
be abort

[If at one point in time all errors that have occurred are repaired and no
new errors occur for a sufficiently long time, the processes come to a
common decision

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 26/44

Distributed Systems

L Two-Phase Commit Protocol

Terminology

Window of vulnerability

m Interval between the local commit decision of a process and the
notification of the common decision

m Also called uncertainty period of a process

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 27/44

Distributed Systems

L Two-Phase Commit Protocol

Terminology

Window of vulnerability

m Interval between the local commit decision of a process and the
notification of the common decision

m Also called uncertainty period of a process
Blocking protocol

m The protocol provides that a process must await the repair of a fault

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 27/44

Distributed Systems

L Two-Phase Commit Protocol

Terminology

Window of vulnerability

m Interval between the local commit decision of a process and the
notification of the common decision

m Also called uncertainty period of a process
Blocking protocol

m The protocol provides that a process must await the repair of a fault
Independent recovery

m A process can make a decision on its own after a failure without
communicating with another process

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 27/44

Distributed Systems

L Two-Phase Commit Protocol

Terminology

Window of vulnerability

m Interval between the local commit decision of a process and the
notification of the common decision

m Also called uncertainty period of a process
Blocking protocol

m The protocol provides that a process must await the repair of a fault
Independent recovery

m A process can make a decision on its own after a failure without
communicating with another process

Participants

m The processes that handle commit protocol

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 27/44

Distributed Systems

LTwofPhase Commit Protocol

Background

Lemmas

m |f communication failures or system failures are possible, there is no

commit protocol which does not block a process

Note: If only individual site failure occur a non-blocking commit protocol may still
exist.

m No commit protocol can guarantee independent recovery of failed

processes
Note: There is no commit protocol without a uncertainty period for the participants

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 28/44

Distributed Systems

L Two-Phase Commit Protocol

Basics of the Two Phase Commit Protocol

Two Phase Commit Protocol (2PC)

Blocking commit algorithm with a weak termination property (= if no
errors occur, all processes come to a decision at some point)

First published by J. Gray, 1978

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems

LTwofPhase Commit Protocol

Basics of the Two Phase Commit Protocol

Two Phase Commit Protocol (2PC)

Blocking commit algorithm with a weak termination property (= if no
errors occur, all processes come to a decision at some point)

First published by J. Gray, 1978
Roles
m Participant

m Coordinator as designated participant controlling the protocol
Note: typically the participant which initiates the transaction
m Coordinator knows all participants

m Participants only know the coordinator

Use of local logs of each participant to update the status of the
commit process

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems

L Two-Phase Commit Protocol

Two Phase Commit Protocol

Message flow (normal case without failures)

prepare (TID)

Phase 1
i
voting prepared (OK / failed)
commit / abort
Phase 2
decision

done (optional)

@ coordinator
participant

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 30/44

Distributed Systems

L Two-Phase Commit Protocol

State Diagram of the Coordinator

prepare (TID)

prepared

commit / abort

done (optional)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 31/44

Distributed Systems

L Two-Phase Commit Protocol

State Diagram of the Coordinator

Asks

prepare (TID)

prepared

commit / abort

done (optional)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 31/44

Distributed Systems

L Two-Phase Commit Protocol

State Diagram of the Coordinator

Asks

Waiting
for responses

prepare (TID)

prepared

commit / abort

done (optional)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 31/44

Distributed Systems

L Two-Phase Commit Protocol

State Diagram of the Coordinator

Asks

Waiting
for responses

prepare (TID)

local
decision
of the coordinator

prepared

commit / abort

done (optional)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 31/44

Distributed Systems

L Two-Phase Commit Protocol

State Diagram of the Coordinator

Asks

Waiting
for responses

prepare (TID)

local
decision
of the coordinator

prepared

commit / abort
Propagate

Waiting

. . jonal
for confirmation done (optional)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 31/44

Distributed Systems

L Two-Phase Commit Protocol

State Diagram of the Coordinator

Asks

Waiting
for responses

prepare (TID)

local
decision
of the coordinator

prepared

commit / abort
Propagate

Waiting

. . jonal
for confirmation done (optional)

Forget

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 31/44

Distributed Systems

L Two-Phase Commit Protocol

State Diagram of the Participants

prepare

prepared(ok) epared(failed)

prepare (TID)

prepared

commit / abort

done (optional)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 32/44

Distributed Systems

L Two-Phase Commit Protocol

State Diagram of the Participants

Local
preparation

prepare (TID)

prepare

prepared(ok) epared(failed) prepared

commit / abort

done (optional)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 32/44

Distributed Systems

L Two-Phase Commit Protocol

State Diagram of the Participants

Local
preparation

prepare (TID)

prepare
Waltlln.g
on decision

prepared(ok) epared(failed) of the coordinator preplared

1
commit / abort

done (optional)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 32/44

Distributed Systems

L Two-Phase Commit Protocol

State Diagram of the Participants

Local
preparation

prepare (TID)

prepare
Waltlln.g
on decision

prepared(ok) epared(failed) of the coordinator preplared

1
Execute commit / abort
actions
according

to decision done (optional)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 32/44

Distributed Systems

L Two-Phase Commit Protocol

State Diagram of the Participants

Local
preparation

prepare (TID)

prepare
Waltlln.g
on decision

prepared(ok) epared(failed) of the coordinator preplared

1
Execute commit / abort
actions
according

to decision done (optional)

Communicate
end

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 32/44

Distributed Systems

L Two-Phase Commit Protocol

State Diagram of the Participants

prepare (TID)

Waiting
on decision

(failed) of the coordinator preplared

1
Execute commit / abort
actions
according

to decision done (optional)

Communicate
end

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 32/44

Distributed Systems

L Two-Phase Commit Protocol

Logging of the Coordinator

prepare (TID)

prepared

commit / abort

done (optional)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 33/44

Distributed Systems

L Two-Phase Commit Protocol

Logging of the Coordinator

‘ TID : begin(Py, ..., Py)

Asks

prepare (TID)

prepared

commit / abort

done (optional)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 33/44

Distributed Systems

L Two-Phase Commit Protocol

Logging of the Coordinator

‘ TID : begin(Py, ..., Py)

Asks

Waiting
for responses

prepare (TID)

prepared

commit / abort

done (optional)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 33/44

Distributed Systems

L Two-Phase Commit Protocol

Logging of the Coordinator

‘ TID : begin(Py, ..., Py)

Asks

Waiting
for responses

prepare (TID)

local
decision
of the coordinator

prepared
TID : committed
commit / abort

done (optional)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 33/44

Distributed Systems

L Two-Phase Commit Protocol

Logging of the Coordinator

‘ TID : begin(Py, ..., Py)

Asks
Waiting prepare (TID)
Decides the re- for responses
sult (“forced
write") local
decision prepared

TID : committed of the coordinator

commit / abort

done (optional)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 33/44

Distributed Systems

L Two-Phase Commit Protocol

Logging of the Coordinator

‘ TID : begin(Py, ..., Py)

Asks
Waiting prepare (TID)
Decides the re- for responses
sult (“forced
write") local
decision prepared

TID : committed of the coordinator

, I commit / abort
' TID: aborted | Propagate

Waiting

. . jonal
for confirmation done (optional)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 33/44

Distributed Systems
LTwofPhase Commit Protocol

Logging of the Coordinator

‘ TID : begin(Py, ..., Py)

Asks
Waiting
Decides the re- for responses
sult (“forced
write") local
decision

TID : committed of the coordinator

. 1
TID : aborted Propagate

Waiting
for confirmation

TID : done

Forget

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

prepare (TID)

prepared

commit / abort

done (optional)

33/44

Distributed Systems

L Two-Phase Commit Protocol

Logging of the Participants

prepare (TID)

prepared

commit / abort

done (optional)

analog on unilateral abort

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 34/44

Distributed Systems

L Two-Phase Commit Protocol

Logging of the Participants

‘ TID : begin(coord C) ‘

Local

Preparation prepare (TID)

prepared

commit / abort

done (optional)

analog on unilateral abort

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

34,44

Distributed Systems

L Two-Phase Commit Protocol

Logging of the Participants

‘ TID : begin(coord C) ‘

Local
Preparation

. . . prepare (TID)
Wit
on the decision

of the coordinator prep:ared

1
commit / abort

done (optional)

analog on unilateral abort

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

34,44

Distributed Systems

L Two-Phase Commit Protocol

Logging of the Participants

‘ TID : begin(coord C) ‘

Local

Preparation prepare (TID)
Waiting
on the decision

TID : pregared of the coordinator

prepared
1
1
commit / abort

done (optional)

analog on unilateral abort

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 34/44

Distributed Systems

L Two-Phase Commit Protocol

Logging of the Participants

‘ TID : begin(coord C) ‘

Local

Preparation prepare (TID)

Waiting
on the decision
of the coordinator

prepared
1
1
Execute commit / abort
actions
according

to decision

done (optional)

analog on unilateral abort

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 34/44

Distributed Systems

L Two-Phase Commit Protocol

Logging of the Participants

‘ TID : begin(coord C) ‘

Local

Preparation prepare (TID)

Waiting
on the decision
of the coordinator

prepared
1
1
Execute commit / abort
actions
according

to decision done (optional)

Communicate
end

analog on unilateral abort

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 34/44

Distributed Systems

L Two-Phase Commit Protocol

Summarized State Diagram for Distributed Transactions

prepare

commit abort

abort

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems

L Two-Phase Commit Protocol

Summarized State Diagram for Distributed Transactions

begin | new state

prepare

commit abort

abort

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems

L Two-Phase Commit Protocol

Failure Handling

Handling of Transaction Failures
m Transition of active transactions into the state aborted

m Unilateral abort decision of the coordinator and every participant is
possible

m Coordinator sends abort later on, even if all participants have replied
with prepared
m Participant reply prepared or failed to the coordinator’s prepare request

Handling of communication failures for active transactions
m Identification via timeouts (as for other events)

m Transition on transaction failures with the same handling as above

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 36/44

Distributed Systems
[

Two-Phase Commit Protocol

Example for Abort Decision of the Coordinator

e prepare (TID)

N 7
\ 7
N 7

7’
N /" prepared
4

abort

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 37/44

Distributed Systems
[

Two-Phase Commit Protocol

Example for Abort Decision of the Coordinator

e Asks
prepare (TID)

N 7
\ 7
N 7

7’
N /" prepared
4

abort

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 37/44

Distributed Systems
[

Two-Phase Commit Protocol

Example for Abort Decision of the Coordinator

° Asks
prepare (TID)
Waiting
0 e for responses

N 7
\ 7

N 7
7’
N /" prepared
4

abort

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 37/44

Distributed Systems
[

Two-Phase Commit Protocol

Example for Abort Decision of the Coordinator

Asks

prepare (TID)

1
1
1
e 1 e
< | Timeout | .
\ /

\ 7/
\. ,+ prepared Abort decision

of the coordinator

Waiting
for responses

abort

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 37/44

Distributed Systems
[

Two-Phase Commit Protocol

Example for Abort Decision of the Coordinator

Asks

prepare (TID)

1
1
1
e 1 e
< | Timeout | .
\ /

\ 7/
\. ,+ prepared Abort decision

of the coordinator

Waiting
for responses

abort

e e Propagate

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 37/44

Distributed Systems

L Two-Phase Commit Protocol

Example for Abort Decision of a Participant

prepare (TID)

prepared (ok)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 38/44

Distributed Systems

L Two-Phase Commit Protocol

Example for Abort Decision of a Participant

prepare (TID)

local abort
action
happens here

prepared (ok)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 38/44

Distributed Systems

L Two-Phase Commit Protocol

Example for Abort Decision of a Participant

prepare (TID)

local abort
action
happens here

prepared (ok)
prepared

(failed)

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 38/44

Distributed Systems

L Two-Phase Commit Protocol

Handling of a Site Failure by the Coordinator

m Processing depends on the information found in the log

a) ‘ TID : begin(Py, .., Py)

= abort decision, continue protocol

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 39/44

Distributed Systems

L Two-Phase Commit Protocol

Handling of a Site Failure by the Coordinator

m Processing depends on the information found in the log

a) ‘ TID : begin(Py, .., Py)

= abort decision, continue protocol

b) ‘TID : begin(Py, ..., Py) = decided already before site failure
continue protocol,
send commit/abort message

to all participants

TID : committed

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 39/44

Distributed Systems

L Two-Phase Commit Protocol

Handling of a Site Failure by the Coordinator

m Processing depends on the information found in the log

a) ‘TID:begin(P11~~~7Pn) = abort decision, continue protocol

b) ‘ TID : begin(Py, ..., Py)

= decided already before site failure
continue protocol,
send commit/abort message
to all participants

TID : committed

0 ‘ TID : begin(Py, ..., Py)

= nothing to do

TID : committed

TID : done

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

39/44

Distributed Systems

L Two-Phase Commit Protocol

Handling of a Site Failure by the Participant

m Processing also depends on the information found in the log

a) ‘ TID : begin(coord C)‘ = abort

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems

L Two-Phase Commit Protocol

Handling of a Site Failure by the Participant

m Processing also depends on the information found in the log

a) ‘ TID : begin(coord C)‘ = abort

b) ‘ TID : begin(coord C)‘ = abort

I TID : after image

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 40/44

Distributed Systems

LTwofPhase Commit Protocol

Handling of a Site Failure by the Participant

m Processing also depends on the information found in the log

a) ‘ TID : begin(coord C)‘ = abort

b) ‘ TID : begin(coord C)‘ = abort

I TID : after image

<) ‘TID:begin(coord C)‘ = no unilateral decision possible

ask coordinator C
getDecisision(TID)

el

TID : after image

TID : prepared

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 40/44

continue protocol

Distributed Systems

L Two-Phase Commit Protocol

Handling of a Site Failure by the Participant (2)

d) ‘T/D . begin(coord c)‘ = independent recovery possible

repeat local commit/abort action

W continue protocol
TID :

after image

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 41/44

Distributed Systems

L Two-Phase Commit Protocol

Handling of a Site Failure by the Participant (2)

d) ‘T/D . begin(coord c)‘ = independent recovery possible

repeat local commit/abort action

W continue protocol
TID :

after image

e) ‘ TID : begin(coord C)‘

= nothing to do

TID : done

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 41/44

Distributed Systems

LTwofPhase Commit Protocol

Extensions

Coordinator migration

m The coordinator role is transferred to a highly reliable computer

m Consequently, blocking of the participants due to a unavailability of the
coordinator becomes less likely

Group commitment

m Common commitment of multiple transactions
m Less forced write operations

m Increased throughput (with slightly increased protocol runtime)
Cooperative termination

m Participants know each other

m Participants can ask other participants in case of site failures to avoid
blocking

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 42/44

Distributed Systems
LTwofPhase Commit Protocol

Extensions (2)

Presumed abort/presumed commit
m Set a default value for the result of a transaction if no specific outcome

record in the log exists
m Simplification possible for log shortening
Decentralized two phase commit protocol
m No central coordinator
m Communication among participants, e. g., preferable via broadcast
transmissions
m Reduces time complexity

43 /44

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23

Distributed Systems

LSummary

Important takeaway messages of this
chapter

= Transactions reduce the complexity of
distributed applications

m The corresponding error model must
distinguish between transaction, site,
media and communication errors

m The two phase commit is the most
commonly used commit protocol

Prof. Dr. Oliver Hahm — Distributed Systems — Distributed Transactions — SS 23 44 /44

	Transaction Concept
	Site Local Commit Protocols
	Two-Phase Commit Protocol

