
Distributed Systems

Distributed Systems
Distributed Transactions

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences

Faculty 2: Computer Science and Engineering

oliver.hahm@fb2.fra-uas.de

https://teaching.dahahm.de

30.06.2023

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 1/44

https://teaching.dahahm.de

Distributed Systems

Motivation

Particular problem for the development of distributed applications:

Partial Failure Property

Failure of single components in a distributed system

⇒ Complex error conditions in distributed applications

Motivation for transactions

Atomic actions as generalization of the transaction concept of
databases

Reducing the complexity for the application developer in the presence
of errors and concurrency

Automatic backward error recovery, combination with forward error
recovery possible

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 2/44

Distributed Systems

Agenda

1 Transaction Concept

2 Site Local Commit Protocols
Intention Lists
Shadowing
Write-Ahead Logging (WAL)

3 Two-Phase Commit Protocol

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 3/44

Distributed Systems

Transaction Concept

Agenda

1 Transaction Concept

2 Site Local Commit Protocols
Intention Lists
Shadowing
Write-Ahead Logging (WAL)

3 Two-Phase Commit Protocol

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 4/44

Distributed Systems

Transaction Concept

Transaction Concept

Definition

A transaction is a series of actions (i.e., operation on resources) with ACID
properties.

Atomicity:
Transaction is either executed completely or appears as never started
No intermediate result in between start and final state gets visible

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 5/44

Distributed Systems

Transaction Concept

Transaction Concept

Definition

A transaction is a series of actions (i.e., operation on resources) with ACID
properties.

Atomicity:
Transaction is either executed completely or appears as never started
No intermediate result in between start and final state gets visible

Consistency:
A transaction takes the system from one consistent state into another
consistent state
No application constraints is violated

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 5/44

Distributed Systems

Transaction Concept

Transaction Concept

Definition

A transaction is a series of actions (i.e., operation on resources) with ACID
properties.

Atomicity:
Transaction is either executed completely or appears as never started
No intermediate result in between start and final state gets visible

Consistency:
A transaction takes the system from one consistent state into another
consistent state
No application constraints is violated

Isolation:
Each transaction must be performed without interference from other
transactions

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 5/44

Distributed Systems

Transaction Concept

Transaction Concept

Definition

A transaction is a series of actions (i.e., operation on resources) with ACID
properties.

Atomicity:
Transaction is either executed completely or appears as never started
No intermediate result in between start and final state gets visible

Consistency:
A transaction takes the system from one consistent state into another
consistent state
No application constraints is violated

Isolation:
Each transaction must be performed without interference from other
transactions

Durability:
The effects of a completed transaction do not get lost
(even in case of any (allowed) error wrt the error model)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 5/44

Distributed Systems

Transaction Concept

Local and Distributed Transactions

Local transaction

Effects are restricted to a
single computer system

State diagram

active

committed aborted

begin

abortcommit

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 6/44

Distributed Systems

Transaction Concept

Local and Distributed Transactions

Local transaction

Effects are restricted to a
single computer system

Distributed transaction

Effect to multiple sites of a
distributed system

State diagram

active

committed aborted

begin

abortcommit

?
to be developed

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 6/44

Distributed Systems

Transaction Concept

Failure Model – Abort and Site Failure

Definition

A failure model describes all anticipated failures to which a system reacts
gracefully. All other failures are considered a disaster.

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 7/44

Distributed Systems

Transaction Concept

Failure Model – Abort and Site Failure

Definition

A failure model describes all anticipated failures to which a system reacts
gracefully. All other failures are considered a disaster.

Transaction abort:
Aborting single transactions, e. g., by . . .

explicit user aborts
errors in the application logic
as a consequence of a deadlock resolution

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 7/44

Distributed Systems

Transaction Concept

Failure Model – Abort and Site Failure

Definition

A failure model describes all anticipated failures to which a system reacts
gracefully. All other failures are considered a disaster.

Transaction abort:
Aborting single transactions, e. g., by . . .

explicit user aborts
errors in the application logic
as a consequence of a deadlock resolution

Site failure:
Failure of a participating system, e. g., by . . .

transient or permanent hardware failures (including power outage)
crash of the OS with reboot

All running processes crash

All transactions in state active change to state aborted
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 7/44

Distributed Systems

Transaction Concept

Failure Model – Media Failure and Communication Failure

Media failure:

Non-recoverable error on non-volatile storage medium used while
processing the tranactions, e. g. . . .

Hard disc (used for storing data)
Tape (used for logging)

Standard treatment by using stable storage (redundant storage on
multiple media, e. g., mirror disks, RAID, . . .)

Out of scope for this lecture

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 8/44

Distributed Systems

Transaction Concept

Failure Model – Media Failure and Communication Failure

Media failure:

Non-recoverable error on non-volatile storage medium used while
processing the tranactions, e. g. . . .

Hard disc (used for storing data)
Tape (used for logging)

Standard treatment by using stable storage (redundant storage on
multiple media, e. g., mirror disks, RAID, . . .)

Out of scope for this lecture

Communication failure:

Errors of the messaging system which lead to the loss of messages

Partitioning: Network disintegration into multiple isolated subnetworks

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 8/44

Distributed Systems

Transaction Concept

Flat Transactions

Flat transactions

Traditional model used in database
context

Transaction involves a set of objects
(resources)

Transactions may share objects
(regulated by concurrency control
mechanisms)

Transactions cannot be nested

TA1 TA2

involved objects

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 9/44

Distributed Systems

Transaction Concept

Flat Transactions

Flat transactions

Traditional model used in database
context

Transaction involves a set of objects
(resources)

Transactions may share objects
(regulated by concurrency control
mechanisms)

Transactions cannot be nested

TA1 TA2

atomic atomicatomic atomic

involved objects

⇒ Disadvantage: No possibility to store intermediate results

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 9/44

Distributed Systems

Transaction Concept

Nested Transactions

A transaction may include inner transactions (subtransactions)

Isolated resettability of inner transactions: abort of an inner
transaction results is an exception (not abort!) of higher-level
transaction

Abort of a transaction results in
the abort of all inner
transactions

Commitment is relative to the
parent transaction (final when the
top-level transaction commits)

Concurrency control at each
nesting layer

TA1

TA11 TA12

TA111 TA122

Top level
transaction

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 10/44

Distributed Systems

Site Local Commit Protocols

Agenda

1 Transaction Concept

2 Site Local Commit Protocols
Intention Lists
Shadowing
Write-Ahead Logging (WAL)

3 Two-Phase Commit Protocol

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 11/44

Distributed Systems

Site Local Commit Protocols

Site Local Commit Protocols

Protocols to achieve local atomicity in failure cases and persistent effects:

Intention Lists (Lampson 1981)

Shadowing (Gray 1981)

Write-Ahead Logging (WAL)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 12/44

Distributed Systems

Site Local Commit Protocols

Intention Lists

Agenda

1 Transaction Concept

2 Site Local Commit Protocols
Intention Lists
Shadowing
Write-Ahead Logging (WAL)

3 Two-Phase Commit Protocol

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 13/44

Distributed Systems

Site Local Commit Protocols

Intention Lists

Intention lists

Procedure

Intended changes on data base objects are collected in a list (i. e.,
executed on copies of the original data)

The list is written into stable memory

Decision is made (committed-aborted)

On aborted Discard list
On committed Update originals of the object in non-volatile memory

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 14/44

Distributed Systems

Site Local Commit Protocols

Intention Lists

Intention lists

Procedure

Intended changes on data base objects are collected in a list (i. e.,
executed on copies of the original data)

The list is written into stable memory

Decision is made (committed-aborted)

On aborted Discard list
On committed Update originals of the object in non-volatile memory

In distributed systems

Each node maintains a tentative list and knows the coordinator

A coordinator maintains a list of all nodes and notifies these

Notified nodes update the objects according to their list and delete it

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 14/44

Distributed Systems

Site Local Commit Protocols

Shadowing

Agenda

1 Transaction Concept

2 Site Local Commit Protocols
Intention Lists
Shadowing
Write-Ahead Logging (WAL)

3 Two-Phase Commit Protocol

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 15/44

Distributed Systems

Site Local Commit Protocols

Shadowing

Procedure

Assumes non-volatile memory as tree structure with reference blocks (cf.
UNIX file system)
Create after images of all blocks as shadow version up to the root node
Make decision (committed-aborted) by atomic pointer swap at root block
(writing a block)

On aborted Discard shadow structure
On committed Release former original blocks,

shadow blocks become the original ones

On site failure

Either old or new state is established

Root

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 16/44

Distributed Systems

Site Local Commit Protocols

Shadowing

Procedure

Assumes non-volatile memory as tree structure with reference blocks (cf.
UNIX file system)
Create after images of all blocks as shadow version up to the root node
Make decision (committed-aborted) by atomic pointer swap at root block
(writing a block)

On aborted Discard shadow structure
On committed Release former original blocks,

shadow blocks become the original ones

On site failure

Either old or new state is established

Root

Atomic
pointer
swap

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 16/44

Distributed Systems

Site Local Commit Protocols

Shadowing

Pros & Cons

Advantages

Atomic state change by writing the root block

Drawbacks

No concurrency of commit processes

Physical alignment of data blocks may get lost on commit since
shadow blocks are from the free list

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 17/44

Distributed Systems

Site Local Commit Protocols

Write-Ahead Logging (WAL)

Agenda

1 Transaction Concept

2 Site Local Commit Protocols
Intention Lists
Shadowing
Write-Ahead Logging (WAL)

3 Two-Phase Commit Protocol

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 18/44

Distributed Systems

Site Local Commit Protocols

Write-Ahead Logging (WAL)

Basics of Logging

A log consists of a sequence of so called log records
Each record of variable lengths is identified by a log sequence number (LSN)
→ Byte offset in log stream (analog to TCP sequence numbers)
The log is shared among processes on a node
Linking of related log entries of a commit process
Realization of the log in replicated files (stable memory)
Superordinate table with all log entries and SQL access is common

Block structure of the medium

older write direction−→ younger

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 19/44

Distributed Systems

Site Local Commit Protocols

Write-Ahead Logging (WAL)

WAL: Writing, Reading, and Shortening

Writing of log entries

Only sequential writing of log files (high performance)

Buffered writing of log entries in main memory

Forced write of a log entry enforces storage of all preceding log
entries (with smaller LSN) and return from operation after a block has
been physically stored on the medium

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 20/44

Distributed Systems

Site Local Commit Protocols

Write-Ahead Logging (WAL)

WAL: Writing, Reading, and Shortening

Writing of log entries

Only sequential writing of log files (high performance)

Buffered writing of log entries in main memory

Forced write of a log entry enforces storage of all preceding log
entries (with smaller LSN) and return from operation after a block has
been physically stored on the medium

Reading of log entries

Only in case of site failures and potentially on transaction failures (see
below)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 20/44

Distributed Systems

Site Local Commit Protocols

Write-Ahead Logging (WAL)

WAL: Writing, Reading, and Shortening

Writing of log entries

Only sequential writing of log files (high performance)

Buffered writing of log entries in main memory

Forced write of a log entry enforces storage of all preceding log
entries (with smaller LSN) and return from operation after a block has
been physically stored on the medium

Reading of log entries

Only in case of site failures and potentially on transaction failures (see
below)

Log shortening

Log can get arbitrarily long, but the duration for the restart after a site
failure has to be limited

Use of checkpoints
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 20/44

Distributed Systems

Site Local Commit Protocols

Write-Ahead Logging (WAL)

WAL: Local Commits and Protocol

Use of log entries as part of the local commitment

Log records for each transaction are linked among themselves

Writing of before images (undo records) for all objects whose
persistent original object state is changed during the transaction
(update in place)

Writing of after images (redo records) for all achieved final object
states of the transaction

Store the final outcome record via forced write:
Enforces storage of all related log entries
Upon appearance in the log, the commitment is complete
May be realized as a flag in the last block

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 21/44

Distributed Systems

Site Local Commit Protocols

Write-Ahead Logging (WAL)

WAL: Local Commits and Protocol

Use of log entries as part of the local commitment

Log records for each transaction are linked among themselves

Writing of before images (undo records) for all objects whose
persistent original object state is changed during the transaction
(update in place)

Writing of after images (redo records) for all achieved final object
states of the transaction

Store the final outcome record via forced write:
Enforces storage of all related log entries
Upon appearance in the log, the commitment is complete
May be realized as a flag in the last block

Write-Ahead Logging Protocol

Secured writing of log records before modification of the original
persistent state

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 21/44

Distributed Systems

Site Local Commit Protocols

Write-Ahead Logging (WAL)

Write-Ahead Logging: Error Handling

Handling of transaction failures

(Potentially) create and store “aborted” outcome record

If before records has been written, their content has to be
re-established as persistent object state

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 22/44

Distributed Systems

Site Local Commit Protocols

Write-Ahead Logging (WAL)

Write-Ahead Logging: Error Handling

Handling of transaction failures

(Potentially) create and store “aborted” outcome record

If before records has been written, their content has to be
re-established as persistent object state

Handling of site failures

Read the log

For each transaction which has not yet been completed, establish
before image (if existing)

For all transactions with an existing “committed” outcome record
establish the last after image in each case of all objects (at some point)
→ idempotence

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 22/44

Distributed Systems

Site Local Commit Protocols

Write-Ahead Logging (WAL)

Advantages of WAL

Several interlocked commit operations can take place simultaneously

High I/O performance through buffering and sequential writing of
logs

Data block alignment of the persistent state remains unchanged
(update in place)

Parallelization of logs is possible

After site failures and subsequent restart only the log has to be
analyzed

Log can be shared by commit protocols

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 23/44

Distributed Systems

Two-Phase Commit Protocol

Agenda

1 Transaction Concept

2 Site Local Commit Protocols
Intention Lists
Shadowing
Write-Ahead Logging (WAL)

3 Two-Phase Commit Protocol

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 24/44

Distributed Systems

Two-Phase Commit Protocol

Commit Protocols

Are used to coordinate a commit/abort decision of a set of processes in
an distributed environment

E. g., to enforce atomicity in failure cases and durability for distributed
transaction environments

Special cases of the so called consensus protocols (→ yes/no)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 25/44

Distributed Systems

Two-Phase Commit Protocol

Commit Protocols

Are used to coordinate a commit/abort decision of a set of processes in
an distributed environment

E. g., to enforce atomicity in failure cases and durability for distributed
transaction environments

Special cases of the so called consensus protocols (→ yes/no)

Two Phase Commit Protocol

Most commonly used protocol

Very high practical relevance and used in multiple products

Theoretical background

Multiphase commit protocols (e. g., Skeen, 1981)

Weak/strong termination conditions lead to blocking/non-blocking
commit algorithms

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 25/44

Distributed Systems

Two-Phase Commit Protocol

Properties of a Commit Algorithm

A commit algorithm for a set of processes provides the following
properties:

1 All processes which make a decision make the same decision

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 26/44

Distributed Systems

Two-Phase Commit Protocol

Properties of a Commit Algorithm

A commit algorithm for a set of processes provides the following
properties:

1 All processes which make a decision make the same decision

2 Once a decision has been made, it is binding for any process and
cannot be revoked

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 26/44

Distributed Systems

Two-Phase Commit Protocol

Properties of a Commit Algorithm

A commit algorithm for a set of processes provides the following
properties:

1 All processes which make a decision make the same decision

2 Once a decision has been made, it is binding for any process and
cannot be revoked

3 Only if all processes decide for commit the common decision is
commit

⇒ As soon as one process decides on abort the common decision must
be abort

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 26/44

Distributed Systems

Two-Phase Commit Protocol

Properties of a Commit Algorithm

A commit algorithm for a set of processes provides the following
properties:

1 All processes which make a decision make the same decision

2 Once a decision has been made, it is binding for any process and
cannot be revoked

3 Only if all processes decide for commit the common decision is
commit

⇒ As soon as one process decides on abort the common decision must
be abort

4 If at one point in time all errors that have occurred are repaired and no
new errors occur for a sufficiently long time, the processes come to a
common decision

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 26/44

Distributed Systems

Two-Phase Commit Protocol

Terminology

Window of vulnerability

Interval between the local commit decision of a process and the
notification of the common decision

Also called uncertainty period of a process

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 27/44

Distributed Systems

Two-Phase Commit Protocol

Terminology

Window of vulnerability

Interval between the local commit decision of a process and the
notification of the common decision

Also called uncertainty period of a process

Blocking protocol

The protocol provides that a process must await the repair of a fault

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 27/44

Distributed Systems

Two-Phase Commit Protocol

Terminology

Window of vulnerability

Interval between the local commit decision of a process and the
notification of the common decision

Also called uncertainty period of a process

Blocking protocol

The protocol provides that a process must await the repair of a fault

Independent recovery

A process can make a decision on its own after a failure without
communicating with another process

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 27/44

Distributed Systems

Two-Phase Commit Protocol

Terminology

Window of vulnerability

Interval between the local commit decision of a process and the
notification of the common decision

Also called uncertainty period of a process

Blocking protocol

The protocol provides that a process must await the repair of a fault

Independent recovery

A process can make a decision on its own after a failure without
communicating with another process

Participants

The processes that handle commit protocol

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 27/44

Distributed Systems

Two-Phase Commit Protocol

Background

Lemmas

If communication failures or system failures are possible, there is no
commit protocol which does not block a process
Note: If only individual site failure occur a non-blocking commit protocol may still

exist.

No commit protocol can guarantee independent recovery of failed
processes
Note: There is no commit protocol without a uncertainty period for the participants

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 28/44

Distributed Systems

Two-Phase Commit Protocol

Basics of the Two Phase Commit Protocol

Two Phase Commit Protocol (2PC)

Blocking commit algorithm with a weak termination property (⇒ if no
errors occur, all processes come to a decision at some point)

First published by J. Gray, 1978

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 29/44

Distributed Systems

Two-Phase Commit Protocol

Basics of the Two Phase Commit Protocol

Two Phase Commit Protocol (2PC)

Blocking commit algorithm with a weak termination property (⇒ if no
errors occur, all processes come to a decision at some point)

First published by J. Gray, 1978

Roles

Participant

Coordinator as designated participant controlling the protocol
Note: typically the participant which initiates the transaction

Coordinator knows all participants

Participants only know the coordinator

Use of local logs of each participant to update the status of the
commit process

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 29/44

Distributed Systems

Two-Phase Commit Protocol

Two Phase Commit Protocol

Message flow (normal case without failures)

C

C

C

...

...

P2 PnP1

prepare (TID)

prepared (OK / failed)

P2 PnP1

commit / abort

done (optional)

Phase 1
voting

Phase 2
decision

C coordinator

Pi participant
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 30/44

Distributed Systems

Two-Phase Commit Protocol

State Diagram of the Coordinator

active

wait

committed aborted

wait

done

begin

prepare

decide
(failed)

decide (ok)

abort

commit abort

done

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 31/44

Distributed Systems

Two-Phase Commit Protocol

State Diagram of the Coordinator

active

wait

committed aborted

wait

done

begin

prepare

decide
(failed)

decide (ok)

abort

commit abort

done

Asks
C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 31/44

Distributed Systems

Two-Phase Commit Protocol

State Diagram of the Coordinator

active

wait

committed aborted

wait

done

begin

prepare

decide
(failed)

decide (ok)

abort

commit abort

done

Asks

Waiting

for responses

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 31/44

Distributed Systems

Two-Phase Commit Protocol

State Diagram of the Coordinator

active

wait

committed aborted

wait

done

begin

prepare

decide
(failed)

decide (ok)

abort

commit abort

done

Asks

Waiting

for responses

local

decision

of the coordinator

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 31/44

Distributed Systems

Two-Phase Commit Protocol

State Diagram of the Coordinator

active

wait

committed aborted

wait

done

begin

prepare

decide
(failed)

decide (ok)

abort

commit abort

done

Asks

Waiting

for responses

local

decision

of the coordinator

Propagate

Waiting

for confirmation

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 31/44

Distributed Systems

Two-Phase Commit Protocol

State Diagram of the Coordinator

active

wait

committed aborted

wait

done

begin

prepare

decide
(failed)

decide (ok)

abort

commit abort

done

Asks

Waiting

for responses

local

decision

of the coordinator

Propagate

Waiting

for confirmation

Forget

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 31/44

Distributed Systems

Two-Phase Commit Protocol

State Diagram of the Participants

active

prepared

waitwait

committed aborted

done

begin

prepare

prepared(failed)prepared(ok)

commit abort

done

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 32/44

Distributed Systems

Two-Phase Commit Protocol

State Diagram of the Participants

active

prepared

waitwait

committed aborted

done

begin

prepare

prepared(failed)prepared(ok)

commit abort

done

Local

preparation

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 32/44

Distributed Systems

Two-Phase Commit Protocol

State Diagram of the Participants

active

prepared

waitwait

committed aborted

done

begin

prepare

prepared(failed)prepared(ok)

commit abort

done

Local

preparation

Waiting

on decision

of the coordinator

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 32/44

Distributed Systems

Two-Phase Commit Protocol

State Diagram of the Participants

active

prepared

waitwait

committed aborted

done

begin

prepare

prepared(failed)prepared(ok)

commit abort

done

Local

preparation

Waiting

on decision

of the coordinator

Execute

actions

according

to decision

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 32/44

Distributed Systems

Two-Phase Commit Protocol

State Diagram of the Participants

active

prepared

waitwait

committed aborted

done

begin

prepare

prepared(failed)prepared(ok)

commit abort

done

Local

preparation

Waiting

on decision

of the coordinator

Execute

actions

according

to decision

Communicate

end

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 32/44

Distributed Systems

Two-Phase Commit Protocol

State Diagram of the Participants

active

prepared

waitwait

committed aborted

done

begin

prepare

prepared(failed)prepared(ok)

commit abort

done

window of
vulnerability

Local

preparation

Waiting

on decision

of the coordinator

Execute

actions

according

to decision

Communicate

end

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 32/44

Distributed Systems

Two-Phase Commit Protocol

Logging of the Coordinator

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 33/44

Distributed Systems

Two-Phase Commit Protocol

Logging of the Coordinator

TID : begin(P1, . . . ,Pn)
Asks

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 33/44

Distributed Systems

Two-Phase Commit Protocol

Logging of the Coordinator

TID : begin(P1, . . . ,Pn)
Asks

Waiting

for responses

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 33/44

Distributed Systems

Two-Phase Commit Protocol

Logging of the Coordinator

TID : begin(P1, . . . ,Pn)

TID : committed

TID : aborted

Asks

Waiting

for responses

local

decision

of the coordinator

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 33/44

Distributed Systems

Two-Phase Commit Protocol

Logging of the Coordinator

TID : begin(P1, . . . ,Pn)

TID : committed

TID : aborted

Decides the re-
sult (“forced

write”)

Asks

Waiting

for responses

local

decision

of the coordinator

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 33/44

Distributed Systems

Two-Phase Commit Protocol

Logging of the Coordinator

TID : begin(P1, . . . ,Pn)

TID : committed

TID : aborted

Decides the re-
sult (“forced

write”)

Asks

Waiting

for responses

local

decision

of the coordinator

Propagate

Waiting

for confirmation

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 33/44

Distributed Systems

Two-Phase Commit Protocol

Logging of the Coordinator

TID : begin(P1, . . . ,Pn)

TID : committed

TID : aborted

TID : done

Decides the re-
sult (“forced

write”)

Asks

Waiting

for responses

local

decision

of the coordinator

Propagate

Waiting

for confirmation

Forget

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 33/44

Distributed Systems

Two-Phase Commit Protocol

Logging of the Participants

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

analog on unilateral abort

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 34/44

Distributed Systems

Two-Phase Commit Protocol

Logging of the Participants

TID : begin(coord C)

Local

Preparation

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

analog on unilateral abort

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 34/44

Distributed Systems

Two-Phase Commit Protocol

Logging of the Participants

TID : begin(coord C)

TID : after image
TID : after image
TID : after image

Local

Preparation

Waiting

on the decision

of the coordinator

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

analog on unilateral abort

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 34/44

Distributed Systems

Two-Phase Commit Protocol

Logging of the Participants

TID : begin(coord C)

TID : after image
TID : after image
TID : after image

TID : prepared

"‘forced write"’

Local

Preparation

Waiting

on the decision

of the coordinator

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

analog on unilateral abort

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 34/44

Distributed Systems

Two-Phase Commit Protocol

Logging of the Participants

TID : begin(coord C)

TID : after image
TID : after image
TID : after image

TID : prepared

"‘forced write"’

TID : committed

TID : aborted

Local

Preparation

Waiting

on the decision

of the coordinator

Execute

actions

according

to decision

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

analog on unilateral abort

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 34/44

Distributed Systems

Two-Phase Commit Protocol

Logging of the Participants

TID : begin(coord C)

TID : after image
TID : after image
TID : after image

TID : prepared

"‘forced write"’

TID : committed

TID : aborted

TID : done

Local

Preparation

Waiting

on the decision

of the coordinator

Execute

actions

according

to decision

Communicate

end

C

C

C

......

......

P1 Pn

prepare (TID)

prepared

P1 Pn

commit / abort

done (optional)

analog on unilateral abort

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 34/44

Distributed Systems

Two-Phase Commit Protocol

Summarized State Diagram for Distributed Transactions

active

prepared

committed aborted

begin

prepare

abortcommit

abort

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 35/44

Distributed Systems

Two-Phase Commit Protocol

Summarized State Diagram for Distributed Transactions

active

prepared

committed aborted

begin

prepare

abortcommit

abort

new state

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 35/44

Distributed Systems

Two-Phase Commit Protocol

Failure Handling

Handling of Transaction Failures

Transition of active transactions into the state aborted

Unilateral abort decision of the coordinator and every participant is
possible

Coordinator sends abort later on, even if all participants have replied

with prepared

Participant reply prepared or failed to the coordinator’s prepare request

Handling of communication failures for active transactions

Identification via timeouts (as for other events)

Transition on transaction failures with the same handling as above

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 36/44

Distributed Systems

Two-Phase Commit Protocol

Example for Abort Decision of the Coordinator

C

C

P1 Pn

prepare (TID)

prepared

P1 Pn

abort

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 37/44

Distributed Systems

Two-Phase Commit Protocol

Example for Abort Decision of the Coordinator

C

C

P1 Pn

prepare (TID)

prepared

P1 Pn

abort

Asks

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 37/44

Distributed Systems

Two-Phase Commit Protocol

Example for Abort Decision of the Coordinator

C

C

P1 Pn

prepare (TID)

prepared

P1 Pn

abort

Asks

Waiting
for responses

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 37/44

Distributed Systems

Two-Phase Commit Protocol

Example for Abort Decision of the Coordinator

C

Timeout

C

P1 Pn

prepare (TID)

prepared

P1 Pn

abort

Asks

Waiting
for responses

Abort decision
of the coordinator

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 37/44

Distributed Systems

Two-Phase Commit Protocol

Example for Abort Decision of the Coordinator

C

Timeout

C

P1 Pn

prepare (TID)

prepared

P1 Pn

abort

Asks

Waiting
for responses

Abort decision
of the coordinator

Propagate

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 37/44

Distributed Systems

Two-Phase Commit Protocol

Example for Abort Decision of a Participant

C

C

P1 Pn

prepare (TID)

prepared (ok)

P1 Pn

abort

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 38/44

Distributed Systems

Two-Phase Commit Protocol

Example for Abort Decision of a Participant

C

C

P1 Pn

prepare (TID)

prepared (ok)

P1 Pn

abort

local abort
action

happens here

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 38/44

Distributed Systems

Two-Phase Commit Protocol

Example for Abort Decision of a Participant

C

C

P1 Pn

prepare (TID)

prepared (ok)

P1 Pn

abort

local abort
action

happens here

prepared
(failed)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 38/44

Distributed Systems

Two-Phase Commit Protocol

Handling of a Site Failure by the Coordinator

Processing depends on the information found in the log

TID : begin(P1, . . . ,Pn)a) ⇒ abort decision, continue protocol

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 39/44

Distributed Systems

Two-Phase Commit Protocol

Handling of a Site Failure by the Coordinator

Processing depends on the information found in the log

TID : begin(P1, . . . ,Pn)a)

TID : begin(P1, . . . ,Pn)b)

TID : committed

TID : aborted

⇒ abort decision, continue protocol

⇒ decided already before site failure
continue protocol,
send commit/abort message
to all participants

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 39/44

Distributed Systems

Two-Phase Commit Protocol

Handling of a Site Failure by the Coordinator

Processing depends on the information found in the log

TID : begin(P1, . . . ,Pn)a)

TID : begin(P1, . . . ,Pn)b)

TID : committed

TID : aborted

TID : begin(P1, . . . ,Pn)c)

TID : committed

TID : done

⇒ abort decision, continue protocol

⇒ decided already before site failure
continue protocol,
send commit/abort message
to all participants

⇒ nothing to do

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 39/44

Distributed Systems

Two-Phase Commit Protocol

Handling of a Site Failure by the Participant

Processing also depends on the information found in the log

TID : begin(coord C)a) ⇒ abort

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 40/44

Distributed Systems

Two-Phase Commit Protocol

Handling of a Site Failure by the Participant

Processing also depends on the information found in the log

TID : begin(coord C)a)

TID : begin(coord C)b)

TID : after image
TID : after image

⇒ abort

⇒ abort

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 40/44

Distributed Systems

Two-Phase Commit Protocol

Handling of a Site Failure by the Participant

Processing also depends on the information found in the log

TID : begin(coord C)a)

TID : begin(coord C)b)

TID : after image
TID : after image

TID : begin(coord C)c)

TID : after image
TID : after image
TID : after image

TID : prepared

⇒ abort

⇒ abort

⇒ no unilateral decision possible

ask coordinator C
getDecisision(TID)

continue protocol

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 40/44

Distributed Systems

Two-Phase Commit Protocol

Handling of a Site Failure by the Participant (2)

TID : begin(coord C)d)

TID : after image
TID : after image
TID : after image

TID : prepared

TID : commited

TID : aborted

⇒ independent recovery possible

repeat local commit/abort action

continue protocol

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 41/44

Distributed Systems

Two-Phase Commit Protocol

Handling of a Site Failure by the Participant (2)

TID : begin(coord C)d)

TID : after image
TID : after image
TID : after image

TID : prepared

TID : commited

TID : aborted

TID : begin(coord C)e)

TID : done

⇒ independent recovery possible

repeat local commit/abort action

continue protocol

⇒ nothing to do

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 41/44

Distributed Systems

Two-Phase Commit Protocol

Extensions

Coordinator migration

The coordinator role is transferred to a highly reliable computer

Consequently, blocking of the participants due to a unavailability of the
coordinator becomes less likely

Group commitment

Common commitment of multiple transactions

Less forced write operations

Increased throughput (with slightly increased protocol runtime)

Cooperative termination

Participants know each other

Participants can ask other participants in case of site failures to avoid
blocking

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 42/44

Distributed Systems

Two-Phase Commit Protocol

Extensions (2)

Presumed abort/presumed commit

Set a default value for the result of a transaction if no specific outcome
record in the log exists

Simplification possible for log shortening

Decentralized two phase commit protocol

No central coordinator

Communication among participants, e. g., preferable via broadcast
transmissions

Reduces time complexity

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 43/44

Distributed Systems

Summary

Important takeaway messages of this
chapter

Transactions reduce the complexity of

distributed applications

The corresponding error model must

distinguish between transaction, site,

media and communication errors

The two phase commit is the most

commonly used commit protocol

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed Transactions – SS 23 44/44

	Transaction Concept
	Site Local Commit Protocols
	Two-Phase Commit Protocol

