
Distributed Systems

Distributed Systems
Basics of Communication

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences

Faculty 2: Computer Science and Engineering

oliver.hahm@fb2.fra-uas.de

https://teaching.dahahm.de

23.04.2024

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 1/35

https://teaching.dahahm.de

Distributed Systems

Agenda

1 Basics of Communication
Number of Communication Peers
Addressing
Buffering
Communication Pattern
Semantics of Messages

2 Server Architecture

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 2/35

Distributed Systems

Basics of Communication

Agenda

1 Basics of Communication
Number of Communication Peers
Addressing
Buffering
Communication Pattern
Semantics of Messages

2 Server Architecture

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 3/35

Distributed Systems

Basics of Communication

Basics of Communication

All interaction between any participants requires an underlying
communication capability
Communication channel

The facility that allows for the connection/coupling of communication
partners is called communication channel or simply channel

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 4/35

Distributed Systems

Basics of Communication

Basics of Communication

All interaction between any participants requires an underlying
communication capability
Communication channel

The facility that allows for the connection/coupling of communication
partners is called communication channel or simply channel

Direction of the message flow of a channel
A channel is called directed or unidirectional if one process takes
exclusively the sender role and the other process takes exclusively the
receiver role
Otherwise the channel is called undirected or bidirectional

peer peer

endpoint
communication

endpoint
communication

unidirectional

channel

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 4/35

Distributed Systems

Basics of Communication

Number of Communication Peers

Agenda

1 Basics of Communication
Number of Communication Peers
Addressing
Buffering
Communication Pattern
Semantics of Messages

2 Server Architecture

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 5/35

Distributed Systems

Basics of Communication

Number of Communication Peers

Number of Peers of a Channel

Exactly two:

Most simple (and most common) case

More than two:

For certain applications group communication may be appropriate
→ multicast service
Special case: Broadcast

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 6/35

Distributed Systems

Basics of Communication

Addressing

Agenda

1 Basics of Communication
Number of Communication Peers
Addressing
Buffering
Communication Pattern
Semantics of Messages

2 Server Architecture

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 7/35

Distributed Systems

Basics of Communication

Addressing

Direct Addressing

Each communication partner have a distinct, unambiguous (potentially
globally unique) address

Addressing can be explicit and symmetrical

→ The sender must explicitly name the receiver – and vice versa

Example:

SEND (P, message) - Send a message to process P

RECEIVE (Q, message) - Receive a message from process Q

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 8/35

Distributed Systems

Basics of Communication

Addressing

Direct Addressing

Each communication partner have a distinct, unambiguous (potentially
globally unique) address

Addressing can be explicit and symmetrical

→ The sender must explicitly name the receiver – and vice versa

Example:

SEND (P, message) - Send a message to process P

RECEIVE (Q, message) - Receive a message from process Q

Asymmetrical variant (e.g., for server processes):

→ Only the sender names the receiver, the receiver (server) gets to know
the identity of the sender only on reception

Example:

SEND (P, message)

RECEIVE (sender_id , message)

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 8/35

Distributed Systems

Basics of Communication

Addressing

Indirect Addressing

Communication happens indirectly via intermediary instances

Advantages:

Improved modularity

The number of communication partners can be restructured in a
transparent manner, e.g., after a node failed
Extend options of group communication, like, for example,
m : 1, 1 : n, m : n

Intermediary instance may . . .

only forward
store and forward
transform/translate messages

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 9/35

Distributed Systems

Basics of Communication

Addressing

Example for Indirect Addressing

Mailbox:
SEND (mbox, message) - Send a message to a mailbox mbox.

RECEIVE (mbox, message) - Receive a message from a mailbox mbox.

sender

process
1

sender

process
m

receiver

process

.....

.....

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 10/35

Distributed Systems

Basics of Communication

Buffering

Agenda

1 Basics of Communication
Number of Communication Peers
Addressing
Buffering
Communication Pattern
Semantics of Messages

2 Server Architecture

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 11/35

Distributed Systems

Basics of Communication

Buffering

Buffering

Capacity of a channel:
The number of messages which can be stored temporarily in a channel
to decouple sender and receiver in time

The channel’s capability for buffering messages is typically
implemented by a (waiting) queue

In distributed systems the waiting queue is typically realized on the
receiver site (rendezvous site)

Buffering can be used to restore the message order or to modify the
sending order

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 12/35

Distributed Systems

Basics of Communication

Buffering

No Buffering (Capacity Zero)

Unbuffered communication

Sender and receiver are very closely coupled
in time

Also called Rendezvous

Often considered to be too inflexible
Source: https://de.toonpool.com/, Author: Fussel

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 13/35

Distributed Systems

Basics of Communication

Buffering

No Buffering (Capacity Zero)

Unbuffered communication

Sender and receiver are very closely coupled
in time

Also called Rendezvous

Often considered to be too inflexible
Source: https://de.toonpool.com/, Author: Fussel

Behavior:
A sender gets blocked when a SEND operation happens before the
corresponding RECEIVE operation
As soon as the corresponding RECEIVE operation is executed the message is
copied directly without any buffering from the sender process to the receiver
process
If vice versa a RECEIVE operation happens at first, the receiver is blocked until
the SEND operation is executed

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 13/35

Distributed Systems

Basics of Communication

Buffering

No Buffering (Capacity Zero)

Unbuffered communication

Sender and receiver are very closely coupled
in time

Also called Rendezvous

Often considered to be too inflexible
Source: https://de.toonpool.com/, Author: Fussel

Behavior:
A sender gets blocked when a SEND operation happens before the
corresponding RECEIVE operation
As soon as the corresponding RECEIVE operation is executed the message is
copied directly without any buffering from the sender process to the receiver
process
If vice versa a RECEIVE operation happens at first, the receiver is blocked until
the SEND operation is executed

Example: Communication between threads in various microkernels such
as RIOT or L4

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 13/35

Distributed Systems

Basics of Communication

Buffering

Limited Capacity

A channel can contain at any point of time a maximum of N messages
(waiting queue with capacity N)

SEND operation during a non-full waiting queue

The message is stored in the queue
The sender process resumes its normal operation

Waiting queue is full (it contains N sent but not yet received
messages):

The sender process blocks until free space in the queue is available
again or the message is discarded
Analogously a receiver is blocked on a RECEIVE operation if the waiting
queue is empty

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 14/35

Distributed Systems

Basics of Communication

Buffering

Consequences

Buffered communication enables loose coupling of the communication
partners in terms of time

Passing the message to the communication system does not imply that
the receiver has received the message

Typically the sender won’t even know a maximum duration until a
message is received

If this knowledge is of importance for the sender an explicitly
communication between sender and receiver is required:

Process P (Sender): Process Q (Receiver):
.

send (Q, message); −→ receive (P, message);

receive (Q, reply); ←− send (P, "’acknowledgement"’);

.

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 15/35

Distributed Systems

Basics of Communication

Communication Pattern

Agenda

1 Basics of Communication
Number of Communication Peers
Addressing
Buffering
Communication Pattern
Semantics of Messages

2 Server Architecture

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 16/35

Distributed Systems

Basics of Communication

Communication Pattern

Communication Pattern

One-Way

Single message without response or
acknowledgement

Request/Response

Client role (consumer)

Server role (producer)

Often blocking on the client site (→
standard RPC)

Client

Participant

Server

Request

Response

Participant

Photo by Mitchell Luo on Unsplash

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 17/35

Distributed Systems

Basics of Communication

Communication Pattern

Differing Synchronicity for Request/Response:

Synchronous call: The sender process blocks until the end of the
communication process (→ arrival of the response)
⇒ no parallelism

Asynchronous call: Sender is only delayed for the initiation of the
communication process (→ passing the message to the communication
system)

client

wait

request

process

wait

response

server

send() receive()

reply()

receive_reply()

client

request

response

server

send_call()
receive_call()

send_reply()

(a) synchronous (b) asynchronous

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 18/35

Distributed Systems

Basics of Communication

Communication Pattern

Publisher/Subscriber Model

Message classified by topics or event channels

Receiver subscribe topics (subscriber)

Sender publishes messages or events (publisher)

Model allows for transparent sending of messages to multiple receivers!

Examples: CORBA Notification Service, OMG DDS, MQTT

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 19/35

Distributed Systems

Basics of Communication

Communication Pattern

More Complex Communication Patterns

Not very common in simple communication systems

Exception: Three-way handshake between two participants for reliable
connection establishment

More complex patterns emerge by group communication

Very common on the upper layers

Example: business process

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 20/35

Distributed Systems

Basics of Communication

Semantics of Messages

Agenda

1 Basics of Communication
Number of Communication Peers
Addressing
Buffering
Communication Pattern
Semantics of Messages

2 Server Architecture

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 21/35

Distributed Systems

Basics of Communication

Semantics of Messages

Byte stream

Passed messages of various SEND operations cannot be identified as
individual units any more

⇒ message borders get lost

The receiver (and the communication system) observe only sequence of
characters (byte stream)

Example: UNIX pipes

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 22/35

Distributed Systems

Basics of Communication

Semantics of Messages

Message container

Messages can be identified by sender and receiver

The messages have either a fixed length or the length can be derived
on both sides

⇒ The message borders remain intact

The correct interpretation of the internal structure of a message is the
responsibility of the communication peers

Example: UNIX message queues

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 23/35

Distributed Systems

Basics of Communication

Semantics of Messages

Message Structure

Typed messages

Messages have a typed structure
The type is know to the sender and receiver and partly by the
communication system
The type is used as part of the operations
Exemplary structure of a message:

Receiver

Sender

Type

Size

...

Header



































Data
Representation of the

type

Payload















Message body may contain typed objects (→ object-orientation)
Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 24/35

Distributed Systems

Basics of Communication

Semantics of Messages

Message Serialization

Example

Java object serialization transforms an object into a bytestream and
vice versa (deserialization)

The header contains information about type, layout etc., the body
contains the actual data
Java class implements the interface java.io.Serializable

All attributes of the class must be serializable themselves or marked
as transient
Operations are writeObject(), readObject()

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 25/35

Distributed Systems

Basics of Communication

Semantics of Messages

Messages of a Documental Nature

Example: HTML over HTTP

XML-Documents

Very popular today
Type description via scheme

Example: SOAP (Simple Object Access Protocol)

1 <soap -env:Envelope

xmlns:soap -env="http:// schemas.xmlsoap.org/soap/envelope/"

3 soap -env:encodingStyle="http:// schemas.xmlsoap.org/soap/encoding/"

xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

5 xmlns:xsd="http://www.w3.org /2001/ XMLSchema">

<soap -env:Body >

7 <tns:getFlaeche xmlns:tns="urn:tns:beispiel">

<tns:seite1 xsi:type="xsd:double">8.0</tns:seite1 >

9 <tns:seite2 xsi:type="xsd:double">4.0</tns:seite2 >

</tns:getFlaeche >

11 </soap -env:Body >

</soap -env:Envelope >

13

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 26/35

Distributed Systems

Server Architecture

Agenda

1 Basics of Communication
Number of Communication Peers
Addressing
Buffering
Communication Pattern
Semantics of Messages

2 Server Architecture

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 27/35

Distributed Systems

Server Architecture

Server Architecture

Architectural principles for the internal structure of server processes

Problem: A server typically needs to communicate with multiple clients
at once

Client

Client

.....

.....
Server

Multiplexing

sing

proces−

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 28/35

Distributed Systems

Server Architecture

Models

Simple sequential server

Sequential server as state machine

Parallel server processes

Multithreaded server

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 29/35

Distributed Systems

Server Architecture

Simple Sequential Server

One process handle the requests of all clients one after another

→ Problem if the server acts as a client towards another server while
processing a request: ⇒ the whole server gets blocked!

Drawbacks:

No concurrency in the server
No use of (a potentially) underlying multicore architecture by a single
server process

This approach is hardly acceptable for productive applications in the
traditional Internet, but may be applicable for very constrained devices

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 30/35

Distributed Systems

Server Architecture

Sequential Server as State Machine

client

client
communication

state of

from client i
.....

s
e
le

c
ti

o
n

 l
o

g
ic

server

while(1)

{

}

processing

logic

.....

Request management

connection

establishment

No internal blocking:
multiple requests can be handled in an overlapping manner

Multiplexing "‘by hand"’ ⇒ complex to program

Selection logic in UNIX:

non-blocking requests (Option O_NDELAY) and polling
select()

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 31/35

Distributed Systems

Server Architecture

Parallel Server Processes

Architecture:

client

client

.....

Connection

establishment

server

child

processes

Child processes preserve the current state of communication per
remote peer in memory

Advantage: Multicore architecture can be used

Problem: Expensive process handling (→ context switches)

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 32/35

Distributed Systems

Server Architecture

Multithreaded Server

Automated resolution of the multiplexing problem

A thread is permanently assigned to each request at the start of
processing
Each single thread of the server may block at any point of time without
affecting the overall concurrency

→ Thread pool is required

Applicable for all paradigms of distributed applications

Requires synchronisation!

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 33/35

Distributed Systems

Server Architecture

Current State of Multithreading

All modern operating systems and runtime environments support
threading

Even many embedded operating systems (like RIOT) support
multithreading by now

Typical APIs

pthreads POSIX 1003.4 (C/C++)
Boost threads (C++)
Java Concurrency since SE 5: java.util.concurrent

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 34/35

Distributed Systems

Summary

Important takeaway messages of this
chapter

For all higher layer services in a
distributed system an underlying
communication system is required

The facility that enables the
communication between the peers is
called channel

Important characteristics of a

communication system are

the number of participants

the addressing style

its capacity

the communication pattern

the semantics of the message

Depending on the use case various
architectures to design a server
application are possible

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 24 35/35

	Basics of Communication
	Server Architecture

