Distributed Systems

Distributed Systems

Inter-Process Communication

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
oliver.hahm@fb2.fra-uas.de
https://teaching.dahahm.de

29.04.2024

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 1/30

https://teaching.dahahm.de

Distributed Systems

Service-oriented
Architectures

.

Enterprise Architecture Smart Senser Network

Internet of Things Engineering Systems

Cloud Computing

Distributed Systems

Operating Systems Computer Networks Databases Software Enginesring "Programming”

Distributed Systems

Agenda

Il Processes

B Communication

B Parameter Handling

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 3/30

Distributed Systems
[

Processes

Agenda

Il Processes

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 4/30

Distributed Systems

Processes

Distributed Systems
[

Processes

Programs and Processes

m A Program is an executable piece of software including a set of
instructions

m A Process is a program currently executed by an operating system

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 6/30

Distributed Systems
L

Processes

Programs and Processes

m A Program is an executable piece of software including a set of
instructions

m A Process is a program currently executed by an operating system

Program Classification

= Available in a hardware-specific binary format (and thus including the machine
instructions) to be directly executable by the Operating System.
Example: Windows *.exe and *.com files; UNIX ELF and a.out files

= Require an additional Interpreter, usually executing the statements sequentially.
Example: Unix shell scripts, PERL, JAVA scripts

= Available in machine-independent binary format (Byte-code) to be executed within
a certain environment: Virtual Machine.
Example: JAVA . jar files; Python script files

stems — Inter-Process Communication — SS 24

ibuted Systems

Processes

- \what

Prof. Dr. Oliver Hahm — Distributed

\& 8(‘)

stems — Inter-Process Communication — SS 24

Distributed Systems
[

Processes

Processes, Threads and LWPs

m Processes:
m A process possess a environment which is inherited from its parent
m The OS manages processes
m Each process contains a Process Control Block PCB) which maintains
its attributes

m Threads:

m Individual tasks within a process may be individual assigned to threads
m A process can schedule several (concurrent) threads: multithreading
m Unix Operating Systems supporting POSIX pthreads

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 8/30

Distributed Systems
[

Processes

Inter-Process Communication (IPC)

m In order to cooperatively work on a common task processes need to
exchange information

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 9/30

Distributed Systems
[

Processes

Inter-Process Communication (IPC)

m In order to cooperatively work on a common task processes need to
exchange information

m A process shares common resources (e.g., memory) = threads may
access these resources concurrently

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 9/30

Distributed Systems

L Processes

Inter-Process Communication (IPC)

m In order to cooperatively work on a common task processes need to
exchange information

m A process shares common resources (e.g., memory) = threads may
access these resources concurrently

m Processes on the same computer also share common resources (e.g.,
the file system) — this typically requires support from the OS

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24

Distributed Systems
[

Processes

Inter-Process Communication (IPC)

m In order to cooperatively work on a common task processes need to
exchange information

m A process shares common resources (e.g., memory) = threads may
access these resources concurrently

m Processes on the same computer also share common resources (e.g.,
the file system) — this typically requires support from the OS

m Processes in a distributed system have to rely on message passing

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24

Distributed Systems
[

Processes

Inter-Process Communication (IPC)

m In order to cooperatively work on a common task processes need to
exchange information

m A process shares common resources (e.g., memory) = threads may
access these resources concurrently

m Processes on the same computer also share common resources (e.g.,
the file system) — this typically requires support from the OS

m Processes in a distributed system have to rely on message passing

What type of information is exchanged?

m Occurrence of events

= Program flow information

» Program data

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 9/30

Distributed Systems
[

Processes

Generic Model for IPC

S end-t.o-el.1d host B
interface i ““’“*»—»;_\\
()
processess
Service
Access Point communication

system

network card network card

I f

network

SS 24

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication

Distributed Systems
[

Communication

Agenda

B Communication

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 11/30

ibuted Systems

Communication

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — 24 12/30

Distributed Systems
[

Communication

Types of Inter-Process Communication (IPC)

m Files
An resource stored in the file system which can be accessed by multiple
processes

m Signals and Flags
Notify another process about the occurrence of an event

m Pipes
An unidirectional channel between two processes (can be named or
anonymous)

m Shared Memory
A memory block that can be accessed by multiple processes

m Message Queues
Processes use a queue for message exchange

m (IP and Unix domain) Sockets
An inode or network based communication end point

S Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication ~ 8524 =~ T30

Distributed Systems

L Communication

Files

m Linux
m File descriptors represent file handles
m Part of the POSIX API
m Per default every process owns three file descriptors (stdin, stdout,
and stderr)
m File descriptors can be used for, e.g., reading, writing, seeking, or
truncating a file

m RIOT

m Virtual File System may be implemented by various backends

m Not all IoT devices provide persistent memory

m If available, persistent memory is often realized on flash memory —
wear leveling is required

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 14/30

Distributed Systems
[

Communication

Signals and Flags

m Linux
m POSIX signals
m Standardized messages to trigger a certain behaviour
m The receiver process gets interrupted
m If a signal is unhandled by the receiver, it will terminate

m RIOT

m Thread flags
m Optional kernel feature
m Notify threads of conditions in a race-free and allocation-less way

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 15/30

Distributed Systems
[

Communication

Pipes

m Linux

m A simplex FIFO, i.e., a unidirectional data channel
m One process accesses the write end, the other the read end of the pipe
m It can be anonymous or named via an inode in the file system

m RIOT

= No equivalent available

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 16/30

Distributed Systems
[

Communication

Shared Memory

m Linux
m POSIX shared memory objects
m A shared memory object can be mapped into the process’ memory space
m Shared memory objects are accessed in a similar manner as files

m RIOT

m Since most MCUs do not provide a MMU, all processes can typically
access all memory regions . ..

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 17/30

Distributed Systems

L Communication

Message Queues

m Linux
m POSIX and System V message queues
= Queues are named and can be shared via this name between processes
m Message have priorities

m RIOT

m Kernel messages and mailboxes

m Optional feature

m Block and non-block API available

m A thread may create a message buffer

m Mailboxes can be accessed by multiple processes

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 18/30

Distributed Systems
[

Communication

Sockets

m Linux

m POSIX (or BSD) Sockets
m Common API for Internet and Unix Domain sockets
m A socket represents the endpoint of a communication endpoint

m RIOT

m POSIX Sockets on top of the sock interface
m sock is currently implemented for . ..

m TCP

= UDP

® Raw IP

m DTLS

= DNS

m More lightweight and custom-tailored = less generic

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 19/30

Distributed Systems
[

Communication

Types of Inter-Process Communication (IPC)

m Files

m Signals and Flags
m Pipes

m Shared Memory
m Message Queues

m (IP and Unix domain) Sockets

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 20/30

Distributed Systems
[

Parameter Handling

Agenda

B Parameter Handling

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 21/30

Distributed Systems
[

Parameter Handling

Data Types

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 22/30

Distributed Systems
[

Parameter Handling

Data Types

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 22/30

Distributed Systems
[

Parameter Handling

Data Types

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 22/30

Distributed Systems
L

Parameter Handling

: sl N

\ch aect oN?
\:I,:rese,r\’tad &y 0%
(

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — 24 PEYEL

Distributed Systems
L

Parameter Handling

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — 24 PEYEL

Distributed Systems
L Parameter Handling

e(\>
| AU
h ded\ OA?
\;\((;se,r\ &Y OXOQ66 \S
e . se al N \al 2
which 489 0AQO

Distributed Systems
[

Parameter Handling

Parameter Handling

m Heterogeneity Problem

m Different encodings (e.g., ASCII, UTF-8)
= Endianness — little endian vs. big endian
m Differing number formats

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 24 /30

Distributed Systems
[

Parameter Handling

Parameter Handling

m Heterogeneity Problem
m Different encodings (e.g., ASCII, UTF-8)
= Endianness — little endian vs. big endian
m Differing number formats
m Possible solutions
m Mapping between local data representations

m Sender uses its local representation, the receiver transforms it
= Requires m - n mappings (for n local representations and m different
participants)
m Canonical network representation for all types

m Requires 2n mappings (for n local representations)
m Potentially unnecessary encoding

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 24 /30

Distributed Systems
[

Parameter Handling

Common Network Representations: XDR

m External Data Representation
m Defined by Sun as part of SunRPC
®m Mostly Motorola 68000 data formats: ASCII; big endian, two complements;
IEEE floating points, ...
m Compound data types: arrays, structures, unions
m No explicit data typing, i.e., no self-describing data

struct { 5
string author<>; Stee
; n
int year; ===
each 4 bytes
string publisher<>; 23?2 ytes)
¥ Wesl
ey__

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 25/30

Distributed Systems
L

Parameter Handling

Common Network Representations: ASN.1 BER

m /SO Abstract Syntax Notation Number 1,
Basic Encoding Rules, 1ISO 8824, 8825, ITU X.409

m Explicit data types, i.e., the type information precedes all data fields
m Commonly used: CANopen, LDAP, UMTS/LTE, VolP, Encryption
m Standard representation: (type, length, value)

m Drawback: runtime costly (bit access)

Type Identifier:

7 6 5 4 0
| count ::=INTEGER || Class |Type Tag |
1 Boolean
e Tag: 2 Integer, ...
0 2 } Type (ldentifier) 16 Sequence
01 } Length
1A | }Value(2610) Type: 0 Primitive
1 Constructed
each 1 byte (hex) Class: 00 Universal

01 Application...

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 26/30

Distributed Systems

L Parameter Handling

Common Network Representation: CDR

m Common Data Representation
Defintion in OMG CORBA 2.0

n
m Use for CORBA IIOP protocol

m Sender uses its own format, "‘Receiver makes it right"’

m Simple types (short, long, float, char, ...)

m Complex types (sequence, string, union, struct, ...)

m Alignment/Padding according to the multiple of the element length
m Big endian

Istruct <string, unsigned long> |

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5 78 | ST | B | YR | N 2002

05 J00]o00]o00]|53]54]45]45][4E]| 00]00]o00]00]o00]o07]D2

< Lange — < Padding —

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 27/30

Distributed Systems
[

Parameter Handling

Common Network Representations: JSON

m JavaScript Object Notation Data Interchange Format
m Lean, text based exchange format

Independent of programming languages

RFC 7159, derived from ECMAScript

Easy to parse, many parsers available

Simple types (string, number, boolean, null)

Complex types (object, array)

® An object is an unordered list of name/value pairs
B A name is a string and the values may be a simple type, an object, or an array
B An array is an ordered sequence of values

{

"AUTHOR" : "Steen",
"YEAR" : 2002,
"PUBLISHER" : "Wesley"
}

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 28/30

Distributed Systems

L Parameter Handling

Problems

m Complex, compound parameter types
m e.g., structs, arrays, require rules for serialization

m Addresses in parameters
m No meaning at the destination’s address space
m Most simple solution: prohibit addresses, only allow call-by-value (e.g.,
SunRPC)
m Use of a common, global address space if possible
m Replace pointers by markers and reconstruct compound data structures
at receiver side by pointers (e.g., DCE RPC)

Prof. Dr. Oliver Hahm — Distributed Systems — Inter-Process Communication — SS 24 29/30

Distributed Systems

LSummary

Important takeaway messages of this
chapter
m IPC is required to exchange
information between processes (or
threads)
= Various common concepts exist
implemented differently for different
operating systems

m If data is exchanged between hosts in
the network a common interpretation
of the data is required

	Processes
	Communication
	Parameter Handling

