
Distributed Systems

Distributed Systems
Sockets

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering

oliver.hahm@fb2.fra-uas.de

https://teaching.dahahm.de

30.04.2024

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 1/36

https://teaching.dahahm.de

Distributed Systems

Agenda

1 Motivation

2 File Descriptors and Sockets

3 Socket API

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 2/36

Distributed Systems

Motivation

Agenda

1 Motivation

2 File Descriptors and Sockets

3 Socket API

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 3/36

Distributed Systems

Motivation

Towards a Standard Network API

Since about 1980 most of the operating systems possess (still often
proprietary) a interface for network access in order to allow communication
with peer systems.
Samples:

Digital (DEC): VMS/OpenVMS ↔ DECnet

Novel: Netware ↔ IPX/SPX

IBM: MVS ↔ VTAM/SNA, VM ↔ IUCV

Microsoft: Windows: ↔ NetBIOS

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 4/36

Distributed Systems

Motivation

Towards a Standard Network API

Since about 1980 most of the operating systems possess (still often
proprietary) a interface for network access in order to allow communication
with peer systems.
Samples:

Digital (DEC): VMS/OpenVMS ↔ DECnet

Novel: Netware ↔ IPX/SPX

IBM: MVS ↔ VTAM/SNA, VM ↔ IUCV

Microsoft: Windows: ↔ NetBIOS

This conflicts with goal of interoperability!

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 4/36

Distributed Systems

File Descriptors and Sockets

Agenda

1 Motivation

2 File Descriptors and Sockets

3 Socket API

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 5/36

Distributed Systems

File Descriptors and Sockets

File Descriptors

The POSIX specification defines file access via file descriptors

This part of the API comprises (among others) functions to open(),
close(), write() to, and read() from files

Upon calling open() the OS adds an entry in the process’ table of
open file descriptors and return the corresponding index

Per default each process possess three commonly used and distinct file
descriptors

0 STDIN: Standard input
1 STDOUT: Standard output
2 STDERR: Standard error

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 6/36

Distributed Systems

File Descriptors and Sockets

Unix Sockets

Sockets are part of the TCP/IP protocol family and have been introduced
to Unix with BSD 4.2 in 1982 (→ Berkeley Sockets).

A socket is a communication endpoint

It can be identified by the pair (IP address, Port number)

In order two communicate, two sockets are required to be present on
. . .

different computing nodes → Internet Sockets or
the same node → Domain Sockets (realized as a special file)

A socket is represented as a file descriptor in the UNIX world

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 7/36

Distributed Systems

File Descriptors and Sockets

Sockets as Standardized Communication Endpoints

Sockets can be created and released from a process, and allow a
bi-directional exchange of information among the peers.

Kernelspace Kernelspace

Network or file system

UserspaceUserspace P Q

Process

Socket

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 8/36

Distributed Systems

File Descriptors and Sockets

Pipes and Sockets

Sockets and Unix Pipes are pretty much comparable from a usage point of view:
Pipes use a handle on a file descriptor to exchange messages,
Sockets use a handle for a network connection.

// Reading from a Unix Pipe
i n t read_fd (v o i d) {

i n t f d ;
cha r buf [8 1 9 2] ;
s s i z e_ t nread ;

wh i l e ((nread = read (fd , buf , s i z e o f (buf))) > 0)
{ . . . }

}

// Wr i t i ng to an I n t e r n e t Socke t s
i n t t cp_wr i t e (v o i d) {

i n t s ;
cha r buf [8 1 9 2] ;
s s i z e_ t nw r i t t e n ;

s = sock e t (AF_INET, SOCK_STREAM, 0) ;
. . .
w h i l e ((nw r i t t e n = w r i t e (s , buf , s i z e o f (buf))) > 0)
{ . . . }

}

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 9/36

Distributed Systems

File Descriptors and Sockets

Domain Sockets

Unlike a pipe a socket provides a bi-directional connection between the communicating peers:

// De c l a r i n g a s o ck e t
#i n c l u d e <sy s / t yp e s . h>
#i n c l u d e <sy s / s o c k e t s . h>

i n t s o c k e t s [2] ;
i n t e r r_socke t ;

e r r_socke t = s o c k e t p a i r (domain , type , p r o t o co l , s o c k e t s) ;

// Socket d e s c r i p t o r s a r e s t o r e d i n a r r a y s o c k e t s [2] ;
domain = AF_UNIX ; // AF_INET used f o r I n t e r n e t
t ype = SOCK_STREAM;
p r o t o c o l = 0 ; // t y p i c a l f o r TCP

Actually using a socket:

cha r buf [1 0 2 4] ;

// De f i n e DATA
r ead (s o c k e t s [1] , buf , 1024) ;
w r i t e (s o c k e t s [2] , DATA, s i z e o f (DATA)) ;

=⇒ Socket files are typically created in /tmp

srwxr-xr-x 1 hahm wheel 0 17 Jun 12:06 OSL_PIPE_1002_SingleOfficeIPC_d-....Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 10/36

Distributed Systems

Socket API

Agenda

1 Motivation

2 File Descriptors and Sockets

3 Socket API

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 11/36

Distributed Systems

Socket API

Network Programming with Sockets

Goal: message-oriented IPC between application parts on remote hosts

Introduced in BSD UNIX 4.X in a C API

Eventually became part of POSIX (Portable Operating System
Interface)

Today available for almost any OS (Windows, Linux, RIOT . . .) in
almost any programming language (Java, Python, C# . . .)

The most commonly used interface for programming network
applications in TCP/IP environments

Forms the foundation for all higher layer application layer protocols
(like HTTP)

Support client/server relationship between application components

Java sockets represent BSD sockets as a set of classes

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 12/36

Distributed Systems

Socket API

Types of Sockets

Stream Sockets: (SOCK_STREAM)

Reliable communication (typically of a byte stream) between two
endpoints

Connection-oriented transport

For Internet domain sockets TCP is the default protocol

Datagram Sockets: (SOCK_DGRAM)

Unreliable communication of single messages (best-effort delivery)

Connectionless datagram service

For Internet domain sockets UDP is the default protocol

Raw Sockets: (SOCK_RAW)

Allow access to underlying protocols like IP, ICMP . . .

Typically require superuser permissions

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 13/36

Distributed Systems

Socket API

Streams and Datagram Sockets

Stream sockets realize a rendezvous between the client and the server by
means of the following system primitives:

Client: connect();

Server: accept();

↪→ Once accept(); has been issued, the server is in blocking I/O mode.

Datagram socket primitives:

Client: sendto();

Server: recfrom();

↪→ Messages are transmitted without the necessity of acknowledgments at
the receiver side.

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 14/36

Distributed Systems

Socket API

Socket Calls

The Berkeley Socket family provide the communication over IPv4
(AF_INET) and IPv6 (AF_INET6) networks using the following calls:

Primitive Meaning

socket Create a new communication endpoint

bind Attach a local address to a socket

listen Announce willingness to accept N connections

accept Block until request to establish a connection

connect Attempt to establish a connection

send/sendto/write Send data over a connection

receive/recvfrom/read Receive data over a connection

select Wait on multiple I/O events

shutdown Close a connection

close Release the connection

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 15/36

Distributed Systems

Socket API

Socket Datatypes

Header files:

#include <sys/types.h>

#include <sys/socket.h>

IP address:

struct in_addr { uint32_t s_addr; };

Socket address (generic type, used in system calls):

struct sockaddr {

u_short sa_family; // here AF_xxxx

char sa_data []; // type specific address

};

Socket address (Internet type):

struct sockaddr_in {

u_short sin_family; // here AF_INET , AF_INET6 , or AF_UNIX

u_short sin_port; // Port Number (in network byte order)

struct in_addr sin_addr; // IP -Adresse (in network byte order)

char sin_zero [8]; // unused

};

Cast:

struct sockaddr_in my_addr;

...

(struct sockaddr*) &my_addr ...

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 16/36

Distributed Systems

Socket API

Helper Functions: Address Conversion

Unsigned Integer in network byte order

String in dot−decimal notation

Unsigned Integer in host local byte order

htons()

htonl() ntohl()

ntohs()

inet_ntop() inet_pton()

.

Functions defined in

<sys/types.h>

<netinet/in.h>

Functions defined in

<sys/types.h>

<netinet/in.h>

<arpa/inet.h>

htonl()/htons(): host to network long/short
ntohl()/ntohs(): network to host long/short
inet_ntop(): network to presentation/printable
inet_pton(): presentation/printable to network

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 17/36

Distributed Systems

Socket API

Helper Function: Address Translation (getaddrinfo())

struct addrinfo {

int ai_flags; // AI_PASSIVE , AI_CANONNAME , etc

.

int ai_family; // AF_INET , AF_INET6 , AF_UNSPEC

int ai_socktype; // SOCK_STREAM , SOCK_DGRAM

int ai_protocol; // use 0 for "any"

size_t ai_addrlen; // size of ai_addr in bytes

struct sockaddr *ai_addr; // struct sockaddr_in or _in6

char *ai_canonname;// full canonical hostname

struct addrinfo *ai_next; // linked list , next node

};

#include <sys/types.h>

#include <sys/socket.h>

#include <netdb.h>

int getaddrinfo(

const char *node ,

const char *service ,

const struct addrinfo *hints ,

struct addrinfo **res);

"‘Given node and service, which identify an
Internet host and a service, getaddrinfo()
returns one or more addrinfo structures,
each of which contains an Internet address
that can be specified in a call to bind(2) or
connect(2)."’

(⇒ replaces gethostbyname(),

getservbyname())
Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 18/36

Distributed Systems

Socket API

Example

int main(int argc , char *argv [])

{

struct addrinfo hints;

struct addrinfo *result;

int s;

...

memset (&hints , 0, sizeof(struct addrinfo));

hints.ai_family = AF_UNSPEC; // Allow IPv4 or IPv6

hints.ai_socktype = SOCK_DGRAM; // Datagram socket

hints.ai_flags = AI_PASSIVE; // For wildcard IP address

hints.ai_protocol = 0; // Any protocol

hints.ai_canonname = NULL;

hints.ai_addr = NULL;

hints.ai_next = NULL;

s = getaddrinfo(NULL , argv[1], &hints , &result);

if (s != 0) {

fprintf(stderr , "getaddrinfo: %s\n", gai_strerror(s));

exit(EXIT_FAILURE);

}

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 19/36

Distributed Systems

Socket API

More Helper Functions

gethostname() Get the name of current host
gethostid() Get the unique ID of current host
getsockopt() Retrieve the current parameters of a

socket
setsockopt() Set the parameters of a socket

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 20/36

Distributed Systems

Socket API

Simplified TCP Interaction

process

request

socket()

socket()

connect()

write()/
send()

write()/
send()

read()/
recv()

read()/
recv()

shutdown()

close()

close()

process

server

bind()

listen()

accept()

Mehr?

client

process

connection est.

send request

send response

more?

connection term.

wait for clients

Generalization

A server usually maintains multiple

connections to clients.

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 21/36

Distributed Systems

Socket API

Simplified UDP Interaction

socket()

socket()

process

request

close()

process

serverclient

process

bind()

bind()

recvfrom()

sendto()

sendto()

send request

send response
recvfrom()

more?

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 22/36

Distributed Systems

Socket API

socket()

Create a Socket
int socket(int family, int type, int protocol)

creates a socket for the Internet domain (family=AF_INET) or UNIX domain

(AF_UNIX) of type stream socket (type=SOCK_STREAM), datagram socket

(SOCK_DGRAM) or raw socket (SOCK_RAW) to be used with the protocol protocol

and returns a descript for the created socket. For protocol typically the value 0

is passed. In this case the default protocol for the specified domain and socket

type is selected. For the Internet domain TCP is the default for a stream socket

and UPD for a datagram socket. No socket address is assigned yet → the socket

is unbound.

Example:

sd1 = socket(AF_INET, SOCK_STREAM, 0)

sd2 = socket(AF_INET, SOCK_DGRAM, 0)

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 23/36

Distributed Systems

Socket API

bind()

Binding of a Socket Address
int bind(int sd, struct sockaddr *addr, int addrlen)

binds the socket to the address that has been passed in struct sockaddr. The

type of the address depends on the domain of the socket. For Internet domain

sockets this structure is struct sockaddr_in, for Unix domain sockets a file

name is passed. The socket is registered in the communication system. For clients

of a connection-oriented communication this is not required.

Example:

rc = bind(sd, (struct sockaddr *) &my_addr, sizeof(my_addr))

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 24/36

Distributed Systems

Socket API

listen()

Listen for Incoming Connection Requests
int listen(int sd, int qlength)

indicates that the socket sd is waiting for incoming connections. qlength is the
maximum number of queued connection requests which have not yet been
accepted (→ this is not the maximum number of possible clients.)

Only required for the server site of connection-oriented communication.

Example:

rc = listen(sd, 5)

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 25/36

Distributed Systems

Socket API

accept()

Accept Incoming Connection Requests
int accept(int sd, struct sockaddr *claddr, int *addrlen)

blocks until a new connection request of a client is received on socket sd. Then a
new socket is created and its descriptor is returned. Hence, a a new, private
connection between client and server is created. The socket sd is available for
further connection requests again. The identity of the client (i.e, its remote socket
address) is stored into the passed struct claddr. Its length is set accordingly in
addrlen.

Only required for the server site of connection-oriented communication.

Example:

snew = accept(sd, &clientaddr, &clientaddrlen)

C1

Cn

.....

connect accept

..... server

listen

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 26/36

Distributed Systems

Socket API

connect()

Connection Request
int connect(int sd, struct sockaddr *saddr, int saddrlen)

active connection request for a client using its socket sd to a server. The server’s
address is passed in saddr along with the address’ length as saddrlen.

Only required for the client site of connection-oriented communication.

Example:

rc = connect(sd, &saddr, sizeof(saddr))

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 27/36

Distributed Systems

Socket API

write()/send() und read()/recv()

Send
int write(int sd, char *buf, int len)

int send(int sd, char *buf, int len, int flag)

the call write is used in the same way as for file descriptors. The call send

accepts an additional argument flag which can be used to set additional options.

Receive
int read(int sd, char *buf, int nbytes)

int recv(int sd, char *buf, int nbytes, int flag)

the call read is used in the same way as for file descriptors. The call recv accepts

an additional argument flag which can be used to set additional options.

Example:

charcount = write(sd, buf, len)

charcount = send(sd, buf, len, sendflag)

charcount = read(sd, buf, len)

charcount = recv(sd, buf, len, recvflag)

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 28/36

Distributed Systems

Socket API

shutdown()

Closing a Connection
int shutdown(int sd, int how)

Terminates a connection. The parameter how specify whether and how further
transmission on this connection shall be handled.
The socket descriptor persists and has to be destroyed with a dedicated call to
close().

Example:

rc = shutdown(sd, 2)

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 29/36

Distributed Systems

Socket API

select()

Wait for an I/O Event
#include <sys/time.h>

int select(int nfds, int *readmask, int *writemask,

int *exceptmask, struct timeval *timeout)

allows the monitoring of multiple socket or file descriptors in a single process. The
calling process blocks until a particular event (e.g., the descriptor becomes
readable) occurs for one of the specified descriptors – or the given timeout expires.
The maximum waiting time (timeout) may be limited or unlimited.
The set of descriptors are passed via bitmasks. For this purpose some macro
functions, e.g., FD_SET, exist.

When the function returns the value of readmask has changed and contains the

bitmask of these descriptors where the event has occurred. The return value

indicates the number of these descriptors.

Example:

int sd1, sd2;

fd_set fds;

sd1 = socket(AF_INET,...);

sd2 = socket(AF_INET,...);

...

FD_ZERO(&fds);

FD_SET(sd1,&fds);

FD_SET(sd2,&fds);

rc=select(FD_SETSIZE,&fds,

NULL,NULL,timeout);

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 30/36

Distributed Systems

Socket API

Java Sockets

Provides an interface for the underlying BSD sockets via multiple
interfaces and classes of the package java.net.
Addressing

InetAddress with subclasses Inet4Address and Inet6Address

SocketAddress with subclass InetSocketAddress

TCP Connections

ServerSocket

Socket

For established connections: getInputStream()/getOutputStream()

Datagram communication via UDP

DatagramPacket

DatagramSocket – MulticastSocket

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 31/36

Distributed Systems

Socket API

Server Sockets for Streams

For each configured IP address (IPv4/IPv6) of the server, the available
ports (up to 64K) may be bound to exactly one server process.

Ports below 1024 are privileged ports and may only be used with
particular permissions (Unix root user).

The server processes binds to that port while providing a passively

open communication socket.

Once the client is going to connect to IPServer : PortServer , the socket is
cloned (while a new copy of the server process is instantiated) and becomes
active.

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 32/36

Distributed Systems

Socket API

Sockets in the Unix OS

The command ’netstat’ gives an answer which IP and domain sockets are
currently active:

Figure: Output of netstat on a not very busy *nix system

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 33/36

Distributed Systems

Socket API

Internet versus Domain Sockets

Unix Domain Sockets
Can only be used on the same node
(requiring a context-switch only)

Same API like the IP sockets, however do
not require . . .

any underlying communication
protocol like TCP/IP
any calculation (and verification) of
checksums

The use the file system to maintain the
name space

The effective Unix permissions
(rwx) are usable, in particular while
creating the socket

⇒ Only those user (on the very same
node) belonging to the respective
user/group have permissions to use
the sockets
Domain sockets inherit the
permissions from the process owner

IP Sockets
IP sockets realize network
transparency (connectivity to a
remote node).

May operate using TCP streams of

UDP datagrams as communication

protocol

→ perhaps requiring the session
overhead of the TCP service

IP sockets via localhost

Use the loopback interface of
the operating system
Behave in the same way, as
usual IP sockets

Require two context switches (at the
client and the server side) to
exchange the data.

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 34/36

Distributed Systems

Socket API

Alternatives to POSIX

TLI and STREAMS

UNIX’ Transport Layer Interface (TLI) was based on STREAMS, a
framework for implementing, e.g., network protocols and IPC
TLI was developed mostly with OSI protocols in mind
Today only relevant for historical reasons

sock on RIOT

Designed for constrained devices, i.e., for example, no need for dynamic
memory allocation
Protocol specific interfaces for various network stacks
Wrapper for POSIX sockets is implemented on top
Currently provides interfaces for TCP, UDP, RAW IP, DNS, and DTLS

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 35/36

Distributed Systems

Summary

Important takeaway messages of this
chapter

In order to implement platform
independent distributed applications a
common communication API is
required

The BSD Socket API became the de
facto standard for programming
network applications

This API consists of less than
20 functions to achieve a generic
functionality

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 24 36/36

	Motivation
	File Descriptors and Sockets
	Socket API

