Distributed Systems

Distributed Systems

Remote Invocation

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
oliver.hahm@fb2.fra-uas.de
https://teaching.dahahm.de

13.05.2024

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 1/39

https://teaching.dahahm.de

Distributed Systems

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — 24 2/39

Distributed Systems

Agenda

B Motivation

Il Basic Principles
B Binding
B Error Handling

B RPC Systems

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 3/39

Distributed Systems
[

Motivation

Agenda

B Motivation

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 4/39

Distributed Systems
[

Motivation

Motivation

m Message oriented communication

m asynchronous exchange of messages
m explicitly via send() and receive() operations
m Summary
+ very flexible, all communication patterns possible
- explicit, 1/0O paradigm

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 5/39

Distributed Systems
[

Motivation

Motivation

m Message oriented communication

m asynchronous exchange of messages
m explicitly via send() and receive() operations
m Summary
+ very flexible, all communication patterns possible
- explicit, 1/0O paradigm
m Goal of remote invocation
m Communication transparency
m Appears like an usual local procedure call
— Remote Procedure Call

m Supports . ..

m Service orientation — Service = Set of functions
m RPC for calling the functions
m Object orientation — Remove Method Invocation (RMI)

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 5/39

Distributed Systems
[

Motivation

History

m First comprehensive presentation:

m Dissertation Nelson (1981, XPARC)
m Derived Paper Birrel/Nelson (1984, ACM ToCS)

m Definition:

m RPC as a synchronous mechanism “which transfers control flow and
data as a procedure call between two [separated] address spaces over
a narrowband network.”

m Nelson’s Thesis:

m RPC is an efficient concept for implementing distributed applications
m RPC facilitates the development of distributed systems

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 6/39

Distributed Systems
[

Motivation

History

m First comprehensive presentation:

m Dissertation Nelson (1981, XPARC)

m Derived Paper Birrel/Nelson (1984, ACM ToCS)
m Definition:

m RPC as a synchronous mechanism “which transfers control flow and
data as a procedure call between two [separated] address spaces over
a narrowband network.”

m Nelson's Thesis:
m RPC is an efficient concept for implementing distributed applications
m RPC facilitates the development of distributed systems

= Today:

m Nelson's vision has been widely accepted

= Many produces work on RPC systems

m Typical examples: SunRPC and NFS, OSF DCE RPC, Apache Thrift,
D-Bus

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 6/39

Distributed Systems
[

Basic Principles

Agenda

Il Basic Principles

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 7/39

Distributed Systems
L

Basic Principles

Main Prin

ciple

Client Host (address space)

Server Host (address space)

client client server ser\;er
procedure stub stub procedure
@ ™ receive
2 pack args unpack args L
3 call send — pact 2195
:
. return
recelveAL pack results
unpack results _ send
—— return
transmit
[
OS core - ‘ OS core
transmit
pack/unpack = marshalling/unmarshalling
Proxy components: stub, proxy, skeleton
Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — 24

process

Distributed Systems
[

Basic Principles

Application Development (high level)

Coarse structure:

Interface-
specification

Client- Server-
development development

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 9/39

Distributed Systems
[

Basic Principles

Application Development (Zoom in)

more detailed, but still independent of the particular RPC system:

interface
specification

Interface
Compiler

Client Header Server
Stub Files Stub

4 N

RPC Client Server RPC
library application application library

Client Server
application application

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 10/39

Distributed Systems
[

Basic Principles

Application Development (Zoom in)

more detailed, but still independent of the particular RPC system:

interface
specification

by the application Interface

developer Compiler
N~ > o
N ~_
~ Ay
N \Client* ~ Header Server
Stub ~~ _| Files Stub
N >~ N
RPC Client Server RPC
library application application library

Client Server
application application

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 10/39

Distributed Systems
[

Basic Principles

Example: SunRPC

RPC language
foo.x

Interface
Compiler: rpcgen

Client Header foo.h Server
Stub: foo_clnt.c Files foo_xdr.c Stub: foo_svc.c
RPC Client- Server- RPC
Library Program Program Library
Compile Compile
& Link & Link
Client Server
application application

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24

Distributed Systems
[

Basic Principles

Interface Description

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 12/39

Distributed Systems
[

Basic Principles

Example: Interface Description SunRPC (1)

const MAX_FILENAME_LEN = 255;

typedef string t_filename<MAX_FILENAME_LEN>;
const MAX_CONTENT_LEN = 255;

typedef string t_content <MAX_CONTENT_LEN >;

struct s_fstat {
long dev;
long ino;
long mode;
long nlink;
long wuid;
long gid;
long rdev;
long size;
long blksize;
long blocks;
long atime;
long mtime;
long ctime;

} .
Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — S 24 13/39

struct s_filewrite {
t_filename filename;
t_content content;

};

struct s_chmod {
t_filename filename;
long mods;

};

Distributed Systems
[

Basic Principles

Example: Interface Description SunRPC (2)

program fileservice {
version fsrv {
int fsrv_mkdir (string)
int fsrv_rmdir(string)
int fsrv_chdir(string) = 3;
int fsrv_writefile(s_filewrite) =
string fsrv_readfile(string) = b5;
s_fstat fsrv_fileattr(string) = 6;
int fsrv_chmod(s_chmod) = 7;
} =1
} = 0x30000001;

ol
[N

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24

14739

Distributed Systems
[

Basic Principles

Example: Interface Description DCE

[uuid (5ab2e9b4 -3d48-11d2-9ea4-80c5140aaa’77),
version(1.0), pointer_default (ptr)
]
interface echo {
typedef [ptr, stringl char * string_t;
typedef struct {
unsigned32 argc;
[size_is(argc)] string_t argv[];
} args;
boolean Reverselt(
[in] handle_t h,
[in] args* in_text,
[out] args** out_text,
[out ,ref] error_status_t* status

)

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24

15/39

Distributed Systems
[

Basic Principles

Example: Interface Description Thrift

typedef i32 MylInteger

enum Operation { ADD = 1,
SUBTRACT
MULTIPLY
DIVIDE = 4

w N

struct Work {
1: MyInteger numl = O,
2: MyInteger num2,
3: 0Operation op,
4: optional string comment,
}
exception InvalidOperation { 1: i32 what, 2: string why }
service Calculator {
void ping(),
i32 add(1:i32 numl, 2:i32 num2),
i32 calculate(1:i32 logid, 2:Work w)
throws (1:InvalidOperation ouch),
oneway void quit ()

}

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 16/39

Distributed Systems

L Binding

Agenda

B Binding

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 17/39

Distributed Systems

L Binding

Binding

m Binding
= Problem: Binding of a client to a server is mandatory
m Problem exists for other paradigms as well
m Aspects: Naming & Locating

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 18/39

Distributed Systems

L Binding

Binding

m Binding
= Problem: Binding of a client to a server is mandatory
m Problem exists for other paradigms as well
m Aspects: Naming & Locating
= Naming

m How does the client specify what it wants to be bound to (— service)
m Interface names are structured in a system wide namespace
m Extending this concept by interface attributes — Trading

— Directory and name services

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 18/39

Distributed Systems

L Binding

Binding

m Binding
= Problem: Binding of a client to a server is mandatory
m Problem exists for other paradigms as well
m Aspects: Naming & Locating

= Naming
m How does the client specify what it wants to be bound to (— service)
m Interface names are structured in a system wide namespace
m Extending this concept by interface attributes — Trading
— Directory and name services
= Locating
m Determine the (location dependent) address of a server which exports
the desired interface and can be used for the service
m often: IP address of the host and port number

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 18/39

Distributed Systems

L Binding

Locating Types

m Static address as part of the application

= Benefit: requires no search process
= Drawback: often not flexible enough
= binding too early

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 19/39

Distributed Systems

L Binding

Locating Types

m Static address as part of the application
= Benefit: requires no search process
= Drawback: often not flexible enough
= binding too early
m Search for exporting servers at runtime, e.g., via broadcast
m Benefit: very flexible
m Drawback: increased runtime
= Drawback: Broadcasting across subnet boundaries is not desirable
= binding too late

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 19/39

Distributed Systems

L Binding

Locating Types

m Static address as part of the application
= Benefit: requires no search process
= Drawback: often not flexible enough
= binding too early
m Search for exporting servers at runtime, e.g., via broadcast
m Benefit: very flexible
m Drawback: increased runtime
= Drawback: Broadcasting across subnet boundaries is not desirable
= binding too late
= Manage binding information via intermediary instance
m Mediating instance is called binder, trader, or broker
m Exporting server registers interface (along with all attributes)
m Binding request of an importing client causes assignment by the binder

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 19/39

Distributed Systems

L Binding

Basic Procedure

Exporting the interface

m Register the interface
at binder
m Binder has known

e/(?;%er/ address
A Importing

Client gl c m At first use of the

stub .
service from stub
\ m Provides handle with
Server
e address

Remote invocation
m Client stub uses the
address for the call to
server

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 20/39

Distributed Systems

L Binding

Binder/Trader

Typical interface

Register (service name, version, address|, attributes])
Deregister(services name, version, address)
Lookup (name, version[, attributes]) = address

m Advantages:

m Very flexible

m Works with multiple servers of the same type

m Basis for load balancing between equivalent servers
m Drawbacks:

= Additional effort for exporting and importing of a services is required
m Can be problematic with short-lived servers and clients

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 PIVEL

Distributed Systems
L Binding

Example: SunRPC

m Names

m Pairs (Program number, version number)
m Addresses

m Pairs (IP address of host, port number)
m Binder: Portmapper

= Mapping from names to port numbers
m IP address of host must be known — the portmapper located there will

be used
m The portmapper itself is a SunRPC service (port 111)

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 22/39

Distributed Systems

L Binding

Example: DCE RPC

m Names

m UUID (Universal Unique Identifier)
= Worldwide unique string
m Generated by the tool uuidgen

m Addresses

m Pairs (IP address of host, port number)
m Binding

m Two-tiered within a DCE cell

= No additional knowledge required
m Binder is called RPC daemon

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 23/39

Distributed Systems
[

Binding

Example: DCE RPC (2)

Cell

° “interface xx?" Directory

> Service

CDs >

-t
"Node A"
(-————

Client

poss. global search

@ Node A

reply e

Server
@Port P rped RPC

Daemon

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 24 /39

Distributed Systems

L Error Handling

Agenda

B Error Handling

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24

Distributed Systems

L Error Handling

Error Problem

m Local function call:
— Caller and callee are aborted simultaneously
m RPC:
— Failure of single components in a distributed environment is possible

= Additional error cases caused by the messaging system itself need to be
considered

m Message loss
m Unknown transmission times
m Out of order delivery of messages

m Different RPC systems implement different error semantics

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 26/39

Distributed Systems

L Error Handling

RPC Error Semantics: at-least-once

m at-least-once semantics
m successful execution of the RPC
= called procedure is executed at least once,
i.e., multiple executions may happen
m Can cause arbitrary effects in an error case
m In general, only suited for idempotent operations, i.e., multiple
executions do not change state and result
= Implementation
= Most simple form

m If the client does not receive a result in time, the call is repeated by the
stub (— timeout)

m No precautions on the server are are necessary

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 27/39

Distributed Systems

L Error Handling

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — 24 28/39

Distributed Systems

L Error Handling

RPC Error Semantics: at-most-once

m at-most-once semantics

m Successful execution of the RPC
= Called procedure gets executed exactly once
m Unsuccessful execution of the RPC
= Called procedure gets never executed
m No partial error effects can be left behind
= Implementation

m More complex
m Requires duplicate detection

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 29/39

Distributed Systems
L Error Handling

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — 24 30/39

Distributed Systems

L Error Handling

RPC Error Semantics: exactly-once

m exactly-once semantics

m Successful execution of the RPC
= Called procedure is executed exactly once

= Implementation
= Very complex

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 31/39

Distributed Systems

L Error Handling

Orphan Problem

m Problem: The client dies after calling an RPC

m Generated call may cause further activities even though no one is
waiting for it any more

m After restart responses from a former life may be received

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 32/39

Distributed Systems

L Error Handling

Orphan Problem

m Problem: The client dies after calling an RPC

m Generated call may cause further activities even though no one is
waiting for it any more

m After restart responses from a former life may be received

= Solutions:

m Extermination: Targeted abort of orphaned RPCs based on stable
memory

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 32/39

Distributed Systems

L Error Handling

Orphan Problem

m Problem: The client dies after calling an RPC
m Generated call may cause further activities even though no one is
waiting for it any more
m After restart responses from a former life may be received
= Solutions:
m Extermination: Targeted abort of orphaned RPCs based on stable

memory
m (Gentle) Reincarnation: Introduce epochs on client side

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 32/39

Distributed Systems

L Error Handling

Orphan Problem

m Problem: The client dies after calling an RPC

m Generated call may cause further activities even though no one is
waiting for it any more
m After restart responses from a former life may be received
= Solutions:
m Extermination: Targeted abort of orphaned RPCs based on stable
memory

m (Gentle) Reincarnation: Introduce epochs on client side
m Expiration: RPCs are extended by timeouts

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 32/39

Distributed Systems
L RPC Systems

Agenda

B RPC Systems

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 33/39

Distributed Systems
L RPC Systems

RPC Protocol

m RPC protocol: rules for processing of RPCs
m Depends on the underlying transport system
m Datagram service (e.g., UDP)

+ resource-efficient, low latency
- Duplicates (via timeouts), permutations and loss are possible

m Reliable transport service (e.g., TCP)

+ Less error causes on the upper layers
- Potentially possible performance reducing

= The selection happens dependent on the service requirement

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 34/39

Distributed Systems
L RPC Systems

Example: SunRPC

m Also: Open Network Computing (ONC) RPC

m Embedding in the C language
m Underlying transport service:

m TCP or UDP
m Does not add any reliability enhancing measures
= UDP plus timeouts on the application layer can be used for a
at-least-once semantics
= TCP and message transaction IDs on the application layer can be used
for a at-most-once semantics

m Binding via portmapper
m Portmapper protocol itself is based on RPC
m Parameters
m only call-by-value
m Security
m Authentication: Null, UNIX, DES
~ Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation-SS24 ~ 35/390

Distributed Systems
L RPC Systems

Example: SunRPC

m Also: Open Network Computing (ONC) RPC
m Embedding in the C language

m Underlying transport service:

m TCP or UDP
m Does not add any reliability enhancing measures
= UDP plus timeouts on the application layer can be used for a
at-least-once semantics
= TCP and message transaction IDs on the application layer can be used
for a at-most-once semantics

m Binding via portmapper
m Portmapper protocol itself is based on RPC
m Parameters
m only call-by-value
m Security
m Authentication: Null, UNbX, BES, RPCSEC GSS
~ Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation-SS24 ~ 35/390

Distributed Systems
L RPC Systems

OSF DCE/RPC

m Part of the OSF Distributed Computing Environments
= Foundation of Microsoft's DCOM and ActiveX
= Embedding for C/C++
m Multiple semantics possible (at-most-once as default)
m Arbitrary parameter types

— long parameters via pipe mechanism
m Security is based on the Kerberos framework

m Relevancy has decreased

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 36/39

Distributed Systems
L RPC Systems

Modern RPC system: Apache Thrift

Client Server

m Apache Thrift project (http://thrift.apache.org/) . .

m Origins at Facebook, published in 2007
Supports all common programming languages
Simple Thrift IDL
IDL Compiler generates client and server stubs
Multiple server architectures available:
B TNonBlockingServer
B TThreadedServer
B TThreadPoolServer TProtocol
m TForkingServer
[

Generated Code

TProtocol

m Multiple protocols and transports can be configured
m Protocols: binary and text based (like JSON)
= low overhead

m Transports: Tsocket, TMemoryTransport, ...
Input/ Input/
m Well-known users

m Facebook, last.fm, Pinterest, Uber, NSA

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 37/39

http://thrift.apache.org/

Distributed Systems
L RPC Systems

Transparency of RPC Systems

m Access transparency

m Location transparency

m Migration transparency

m Failure transparency

m Concurrency transparency
m Replication transparency
m Performance transparency
m Scaling transparency

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 38/39

Distributed Systems
L RPC Systems

Transparency of RPC Systems

m Access transparency
Yes, the same operation gets executed
m Location transparency
m Migration transparency
m Failure transparency
m Concurrency transparency
m Replication transparency
m Performance transparency

m Scaling transparency

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 38/39

Distributed Systems
L RPC Systems

Transparency of RPC Systems

m Access transparency
Yes, the same operation gets executed
m Location transparency
Yes, via the locating
m Migration transparency
m Failure transparency
m Concurrency transparency
m Replication transparency
m Performance transparency

m Scaling transparency

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 38/39

Distributed Systems
L RPC Systems

Transparency of RPC Systems

m Access transparency
Yes, the same operation gets executed
m Location transparency
Yes, via the locating
m Migration transparency
Yes, via the naming service
m Failure transparency

m Concurrency transparency
m Replication transparency
m Performance transparency
m Scaling transparency

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 38/39

Distributed Systems
L RPC Systems

Transparency of RPC Systems

m Access transparency
Yes, the same operation gets executed
m Location transparency
Yes, via the locating
m Migration transparency
Yes, via the naming service
m Failure transparency
Maybe, depends on the used error semantics
m Concurrency transparency

m Replication transparency
m Performance transparency
m Scaling transparency

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 38/39

Distributed Systems
L RPC Systems

Transparency of RPC Systems

m Access transparency

Yes, the same operation gets executed
m Location transparency

Yes, via the locating
m Migration transparency

Yes, via the naming service
m Failure transparency

Maybe, depends on the used error semantics
m Concurrency transparency

No
m Replication transparency

m Performance transparency
m Scaling transparency

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 38/39

Distributed Systems
L RPC Systems

Transparency of RPC Systems

m Access transparency
Yes, the same operation gets executed
m Location transparency
Yes, via the locating
m Migration transparency
Yes, via the naming service
m Failure transparency
Maybe, depends on the used error semantics
m Concurrency transparency
No
m Replication transparency
Sometimes
m Performance transparency

m Scaling transparency

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 38/39

Distributed Systems
L RPC Systems

Transparency of RPC Systems

m Access transparency
Yes, the same operation gets executed
m Location transparency
Yes, via the locating
m Migration transparency
Yes, via the naming service
m Failure transparency
Maybe, depends on the used error semantics
m Concurrency transparency
No
m Replication transparency
Sometimes
m Performance transparency
No
m Scaling transparency

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 38/39

Distributed Systems
L RPC Systems

Transparency of RPC Systems

m Access transparency
Yes, the same operation gets executed
m Location transparency
Yes, via the locating
m Migration transparency
Yes, via the naming service
m Failure transparency
Maybe, depends on the used error semantics
m Concurrency transparency
No
m Replication transparency
Sometimes
m Performance transparency
No
m Scaling transparency
For RMI yes, by the object orientation, for other RPCs sometimes

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 38/39

Distributed Systems

LSummary

Important takeaway messages of this
chapter

m RPCs provide a possibility to call
functions on a remote host as if this
would happen locally

= Important elements of an RPC system
are the IDL, its compiler, and the
binder

m Multiple error semantics exist which
can be handled below or on top of the
RPC system

Prof. Dr. Oliver Hahm — Distributed Systems — Remote Invocation — SS 24 39/39

	Motivation
	Basic Principles
	Binding
	Error Handling
	RPC Systems

