
Distributed Systems

Distributed Systems
RESTful APIs

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering

oliver.hahm@fb2.fra-uas.de

https://teaching.dahahm.de

01.07.2024

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 1/28

https://teaching.dahahm.de


Distributed Systems

What is a Web Service?

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 2/28



Distributed Systems

What is a Web Service?

Definition 1

“Web service is a software system designed to support interoperable

machine-to-machine interaction over a network.”

– W3C, Web Services Glossary

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 2/28



Distributed Systems

What is a Web Service?

Definition 1

“Web service is a software system designed to support interoperable

machine-to-machine interaction over a network.”

– W3C, Web Services Glossary

Definition 2

“We can identify two major classes of Web services:

REST-compliant Web services, in which the primary purpose of the service

is to manipulate XML representations of Web resources using a uniform set

of ”stateless” operations; and arbitrary Web services, in which the service

may expose an arbitrary set of operations.”

— W3C, Web Services Architecture (2004)

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 2/28



Distributed Systems

Agenda

1 REST

2 HTTP

3 RESTful Web Services

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 3/28



Distributed Systems

REST

Agenda

1 REST

2 HTTP

3 RESTful Web Services

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 4/28



Distributed Systems

REST

Representational State Transfer

Representational State Transfer (REST) is an architectural style for
distributed hypermedia systems.

Definition

“The name "Representational State Transfer" is intended to evoke an image
of how a well-designed Web application behaves: a network of web pages (a
virtual state-machine), where the user progresses through the application by
selecting links (state transitions), resulting in the next page (representing
the next state of the application) being transferred to the user and rendered
for their use.”

Defined in 2000 by Roy Fielding in his doctoral dissertation.

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 5/28



Distributed Systems

REST

State, Representation, Transfer

State

All stored data of an application at a given point of time

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 6/28



Distributed Systems

REST

State, Representation, Transfer

State

All stored data of an application at a given point of time

Representation

A representation contains all necessary information to modify a resource

May be different from the server’s internal representation
The same data can have multiple representations (e.g., JSON, HTML,
XML)
All changes to the state of a resource shall only happen via its
representation

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 6/28



Distributed Systems

REST

State, Representation, Transfer

State

All stored data of an application at a given point of time

Representation

A representation contains all necessary information to modify a resource

May be different from the server’s internal representation
The same data can have multiple representations (e.g., JSON, HTML,
XML)
All changes to the state of a resource shall only happen via its
representation

Transfer

Client-server architecture
Server acts as a producer, stores and provides the data
Client acts as a consumer and requests the data

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 6/28



Distributed Systems

REST

What is REST?

REST is an architectural style, not a standard

It was designed for distributed systems to address architectural

properties such as performance, scalability, simplicity, modifiability,
visibility, portability, and reliability

REST’s architectural style is defined by 6 principles/architectural

constraints (→ next slide)

Systems and APIs that conforms to the constraints of REST can be
called RESTful

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 7/28



Distributed Systems

REST

REST Principles

Client-server

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 8/28



Distributed Systems

REST

REST Principles

Client-server

Uniform interface

Resource-based
Manipulation of resource through representation
Self-descriptive messages
Hypermedia as the engine of application state

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 8/28



Distributed Systems

REST

REST Principles

Client-server

Uniform interface

Resource-based
Manipulation of resource through representation
Self-descriptive messages
Hypermedia as the engine of application state

Stateless interactions

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 8/28



Distributed Systems

REST

REST Principles

Client-server

Uniform interface

Resource-based
Manipulation of resource through representation
Self-descriptive messages
Hypermedia as the engine of application state

Stateless interactions

Cacheable

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 8/28



Distributed Systems

REST

REST Principles

Client-server

Uniform interface

Resource-based
Manipulation of resource through representation
Self-descriptive messages
Hypermedia as the engine of application state

Stateless interactions

Cacheable

Layered system

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 8/28



Distributed Systems

REST

REST Principles

Client-server

Uniform interface

Resource-based
Manipulation of resource through representation
Self-descriptive messages
Hypermedia as the engine of application state

Stateless interactions

Cacheable

Layered system

Code on Demand (optional)

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 8/28



Distributed Systems

REST

Building RESTful API

Can be built on top of existing web technologies

Reusing semantics of HTTP 1.1 methods

Safe and idempotent methods

Typically called HTTP verbs in context of services

Resource oriented, correspond to CRUD operations

Satisfies uniform interface constraint

HTTP Headers to describe requests & responses

Content negotiation

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 9/28



Distributed Systems

HTTP

Agenda

1 REST

2 HTTP

3 RESTful Web Services

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 10/28



Distributed Systems

HTTP

Recap

What do you remember about

HTTP?

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 11/28



Distributed Systems

HTTP

Hypertext Transfer Protocol (HTTP)

HTTP is a stateless protocol for data transmission
Stateless means that every HTTP message contains all the information necessary to
understand the message
The server does not maintain any information regarding the state or session for the
client, and each request is a transaction, independent of other requests

Specified in RFCs 1945, 2068, 7540, 9114, and many more

Uses TCP via port 80 or 443 (HTTPS → HTTP over a secure channel)

Originally developed by Roy Fielding, Tim Berners-Lee, and others at
CERN from 1989 onwards

Updated to version 2 (HTTP/2) in 2015

Currently in version 3 (HTTP/3) and based on QUIC

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 12/28



Distributed Systems

HTTP

World Wide Web

Together with the concepts of URL1 and HTML2 it is the basis of the
World Wide Web (WWW)

Original main purpose: Loading web pages from webserver in a browser

HTTP needs a reliable transport protocol → TCP

Each HTTP message consists of:

HTTP header : Includes among others information about the encoding,
desired language, browser, and content type
Body : Contains the payload, e.g., the HTML source code of a web page

Today many application work on top of HTTP, e.g., using web sockets

1URL = Uniform Resource Locator
2HyperText Markup Language
Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 13/28



Distributed Systems

HTTP

HTTP Methods

The HTTP protocol provides several requests messages

Request Description

PUT Upload a new resource to the web server
GET Request a resource from the web server
POST Upload data to the web server in order to generate resources
DELETE Erase a resource on the web server

Other commands like HEAD or TRACE exist.

About state

HTTP is a stateless protocol. But via cookies in the header information, applications can
be implemented which require state or session information because they assign user
information or shopping carts to clients.

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 14/28



Distributed Systems

HTTP

What is the Difference between PUT and POST?

PUT POST

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 15/28



Distributed Systems

HTTP

What is the Difference between PUT and POST?

PUT

Requesting client knows the
name of the resource on the
server

POST

Request to the server to create a
resource and return its name

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 15/28



Distributed Systems

HTTP

What is the Difference between PUT and POST?

PUT

Requesting client knows the
name of the resource on the
server

Requests for the attached

entity (in the request body)

POST

Request to the server to create a
resource and return its name

Request that the origin server
accept the attached entity

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 15/28



Distributed Systems

HTTP

What is the Difference between PUT and POST?

PUT

Requesting client knows the
name of the resource on the
server

Requests for the attached

entity (in the request body)

Idempotent

POST

Request to the server to create a
resource and return its name

Request that the origin server
accept the attached entity

Not idempotent

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 15/28



Distributed Systems

HTTP

What is the Difference between PUT and POST?

PUT

Requesting client knows the
name of the resource on the
server

Requests for the attached

entity (in the request body)

Idempotent

Modify a singular resource that
is a part of resources collection.

POST

Request to the server to create a
resource and return its name

Request that the origin server
accept the attached entity

Not idempotent

Add a child resource under
resources collection

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 15/28



Distributed Systems

HTTP

What is the Difference between PUT and POST?

PUT

Requesting client knows the
name of the resource on the
server

Requests for the attached

entity (in the request body)

Idempotent

Modify a singular resource that
is a part of resources collection.

Use as UPDATE

POST

Request to the server to create a
resource and return its name

Request that the origin server
accept the attached entity

Not idempotent

Add a child resource under
resources collection

Use as CREATE

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 15/28



Distributed Systems

HTTP

Safety and Idempotency

Which HTTP methods are idem­

potent?

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 16/28



Distributed Systems

HTTP

Safety and Idempotency

HTTP Method Safe Idempotent

GET ✓ ✓

PUT ✘ ✓

DELETE ✘ ✓

POST ✘ ✘

HEAD ✓ ✓

OPTIONS ✓ ✓

TRACE ✓ ✓

PATCH ✘ ✘

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 16/28



Distributed Systems

HTTP

HTTP Responses

Each HTTP response contains a status code, which consists of three
digits, and a text string, which describes the reason for the response

Status code Meaning Description

1xx Informational Request received, continuing process
2xx Success operation Action received, understood,

accepted, and processed successfully
3xx Redirection Additional action must be taken by

the client to complete the request
4xx Client error Request of the client caused an

error situation
5xx Server error Server failed to fulfill a valid request

=⇒ error was caused by server

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 17/28



Distributed Systems

HTTP

Common HTTP Status Codes

Source: http.cat, Author: Tomomi Imura

The table contains some common status codes of HTTP

Status code Meaning Description
200 OK Request processed successfully. Result is transmitted in the response
204 No Content Request executed successfully. Response intentionally contains no data
301 Moved Permanently The old address is no longer valid
400 Bad Request Request cannot be fulfilled due to bad syntax
401 Unauthorized Request can not be executed without a valid authentication
403 Forbidden Request is executed because of clients lack of privileges
404 Not Found Server could not find the requested resource
500 Internal Server Error Unexpected server error

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 18/28



Distributed Systems

HTTP

HTTP Requests

If an URL is accessed via HTTP (e.g.,
http://example.teaching.dahahm.de/index.html, the request for the
resource /index.html is transmitted to the computer with hostname
example.teaching.dahahm.de

First, via DNS, the hostname is resolved to an IP address

Next, this HTTP GET request is transmitted via TCP to port 80, where the
web server usually operates

GET /index.html HTTP /1.1

Host: example.teaching.dahahm.de

User -Agent: Mozilla /5.0 (X11; Linux x86_64; rv :96.0) Gecko /20100101 Firefox /96.0

Accept: text/html ,application/xhtml+xml ,application/xml;q=0.9, image/avif ,image/webp ,*/

*;q=0.8

Accept -Language: en-US,en;q=0.5

Accept -Encoding: gzip , deflate

Connection: keep -alive

...

Virtual Hosts (vhosts)

One server handles typically more than one domain, i.e., the same web server application may deliver multiple web
pages at the same IP address for different domain names.

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 19/28



Distributed Systems

HTTP

HTTP Response

The HTTP response of the web server consists of a message header
and the message body with the actual message

In this case, the message body contains the content of the requested file
index.html

HTTP /1.1 200 OK

Server: nginx /1.18.0

Date: Fri , 28 Jan 2022 18:05:47 GMT

Content -Type: text/html

Content -Length: 274

Last -Modified: Fri , 28 Jan 2022 17:55:45 GMT

Connection: keep -alive

ETag: "61f42e21 -112"

Accept -Ranges: bytes

<!doctype html>

<html lang="en">

<head>

<meta charset="utf -8">

<meta name="viewport" content="width=device -width , initial -scale =1.0">

<title>Example Page for teaching computer networks </title >

</head>

<body>

<p>Happy networking!</p>

</body>

</html>

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 20/28



Distributed Systems

HTTP

HTTP Protocol Versions (HTTP/1.0 and HTTP/1.1)

HTTP/1.0 (RFC 1945): Prior to any request, a new TCP
connection is established and closed by default by the
server after the transmission of the reply

HTTP/1.1 (RFC 2616): By default, no connection
termination is done

So the connection can be reused for multiple requests
Interrupted transmissions can be resumed with HTTP/1.1

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 21/28



Distributed Systems

HTTP

HTTP Protocol Versions (HTTP/2)

HTTP/2 (RFC 7540): Changes from a text-based protocol to a binary
one

Accelerates the data transfer by compressing the header with the
HPACK algorithm (RFC 7541)
Enables aggregation (Multiplex) of requests and Server Push to send
data automatically

Examples of such data are CSS files (Cascading Style Sheets), which
specify the layout of web pages, or script files

Currently used by approx. 35 % of all web servers

HTTP/3 (RFC 9114): Multiplexed transport via QUIC

Based on QUIC instead of TCP
Integrates TLS key negotiation and avoids head of line blocking
Currently used by approx. 30 % of all web servers and approx. 80 % of
all browsers

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 22/28



Distributed Systems

RESTful Web Services

Agenda

1 REST

2 HTTP

3 RESTful Web Services

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 23/28



Distributed Systems

RESTful Web Services

Addressability

Every “thing” has a URI

http://sales.com/customers/323421

http://sales.com/customers/323421/address

A URI provides information about . . .

The protocol (how do we communicate)
The host/port (where it is on the network)
The resource path (what resource are we communicating with)

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 24/28

http://sales.com/customers/323421
http://sales.com/customers/323421/address


Distributed Systems

RESTful Web Services

URI Syntax

The generic syntax for URIs according to RFC 3986 comprises five
elements:

< scheme >:< scheme − specific − part >

or more detailed:
URI = scheme” : ”authority [”?”query ][”#”fragment]

Where authority = [userinfo”@”]host[” : ”port]

Examples:

ftp://ftp.is.co.za/rfc/rfc1808.txt

http://www.ietf.org/rfc/rfc2396.txt

ldap://[2001:db8::7]/c=GB?objectClass?one

mailto:John.Doe@example.com

tel:+1-816-555-1212

urn:oasis:names:specification:docbook:dtd:xml:4.1.2

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 25/28



Distributed Systems

RESTful Web Services

RESTful Services

Resources as URI

Use unique URI to reference every resource on your API

Operations as HTTP Methods

GET – Queries
POST – Queries
PUT, DELETE – Insert, update, and delete

Connectedness and Discoverability

Like the Web, HTTP Responses contains links to other resources

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 26/28



Distributed Systems

RESTful Web Services

Authentication via OAuth

Open Authorization

OAuth is a standard specified by the IETF in
RFC 5849 (OAuth 1.0) and RFCs 6749 and 6750
(OAuth 2.0) for access delegation and is often used
to authorize access to REST APIs.

Source: Wikipedia, CC BY-SA 4.0Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 27/28



Distributed Systems

Summary

Important takeaway messages of this
chapter

Many modern distributed systems are
built as web services using HTTP as a
transport protocol.

REST is an architectural style to
design such a system

In RESTful systems resources are
represented as URIs and operations as
HTTP methods

Prof. Dr. Oliver Hahm – Distributed Systems – RESTful APIs – SS 24 28/28


	REST
	HTTP
	RESTful Web Services

