
Prof. Dr. Oliver Hahm
Distributed Systems (SS 24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise Sheet 1
Deadline: April 30, 2024 – 04:00 am CEST

Exercise 1 (Clone the Repository)

For the exercises of this course we will work with git. The submission for each
exercise sheet must be committed to a git repository and pushed to a remote. In
order to do so, you will first have to clone your repository from the faculty’s GitLab
instance. The URL for this main repository is:

https://gitlab.informatik.fb2.hs-intern.de/distributed-systems-ss24/<USER>
(Note: You need to replace <USER> with your last name written in small letters and
any potential umlauts replaced (ä, ö, ü) −→ (ae, oe, ue))

You can clone your fork from the command line by calling
git clone <repo> [directory]
(You find the URL for your fork on the GitLab page by clicking on the Code button.)
1

It is recommended to access the repository via ssh. This requires that you cre-
ate an ssh keypair (using ssh-keygen) and upload the public key to GitLab.
Go to your GitLab profile (top-right corner) and navigate to SSH Keys from
the User Settings list on the left. Now copy your public key (per default in
${HOME}/.ssh/id_rsa.pub), copy-paste it into to the GitLab page, and click on
Add key.

1If you get an error about the validity of the TLS certificate, download the server’s certificate
at http://teaching.dahahm.de/assets/gitlab-informatik-fb2-hs-intern-de.pem, and
configure git to use it: git config −−global http.sslCAInfo path/to/cert.

Content: Topics of slide set 00 Page 1 of 4

https://gitlab.informatik.fb2.hs-intern.de/distributed-systems-ss24/<USER>
http://teaching.dahahm.de/assets/gitlab-informatik-fb2-hs-intern-de.pem

Prof. Dr. Oliver Hahm
Distributed Systems (SS 24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Once you have successfully cloned your repository, you can start editing the files in
your workspace. You can check for local modifications in your workspace by calling
git diff

In order to commit local changes to the repository locally, call
git add <filename> and
git commit
and set an appropriate commit message.

In order to push the local repository upstream to your fork, call
git push origin main

ATTENTION: Do not forget this step once your solution is ready for
submission! Otherwise your submission cannot be assessed by the lec-
turer.

Exercise 2 (Work with the Repository)

Create a new file in your repository, save it, add it to git (use git add <FILENAME>),
commit the change (use git commit), and push the changes to the upstream repos-
itory (use git push origin main). Open the file README.md in the editor of your
choosing and add the newly created file to the list of files, i.e., add another bullet
point under Directory structure, list the file name, and describe its content. Save
the modifications into the file. Check the local modifications (git status and git
diff) before committing and pushing the changes to the upstream repository (git
add, git commit, and git push).

Exercise 3 (Programming C)

We will program in C in the exercises of this course. Even if you have not yet
programmed in C, you will probably understand the basics of C rather quickly. You
can find multiple books and online tutorials about programming in C, for instance,

• J. Gusted, Modern C : https://modernc.gforge.inria.fr/

• J. Wolf, C von A bis Z : http://openbook.rheinwerk-verlag.de/c_von_a_
bis_z/

Coding Style
It is expected that you will use a coding style which makes your code read-
able for other persons. This means in particular that you will use consistent in-
dentations and formatting of your code. It is preferable to put all blocks after
if/else/for/while/... in curly brackets. You can separate lines that are not

Content: Topics of slide set 00 Page 2 of 4

https://modernc.gforge.inria.fr/
http://openbook.rheinwerk-verlag.de/c_von_a_bis_z/
http://openbook.rheinwerk-verlag.de/c_von_a_bis_z/

Prof. Dr. Oliver Hahm
Distributed Systems (SS 24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

coherent in terms of content with blank lines. A useful style guide for readable code
can be found, for instance, here:
https://www.kernel.org/doc/Documentation/process/coding-style.rst

Error and return code handling
Please note that library functions will report the status of the called operation via
their return code. Typically a successful operation will return a zero or a positive
number. Errors are usually reported by returning −1. Further error messages may
be accessed via the system variable errno or by using the perror helper function:

int fd = open(" f i l ename " , O_RDONLY) ;
i f (fd == −1) {

perror (" Error on open ") ;
exit (EXIT_FAILURE) ;

}

Error handling and checking the return values is mandatory. You should always
check them.

Hello World!
To warm up to the programming language C again, let’s start with the classic:
implement a small program in C that simply outputs the string “Hello World!”. The
repository template already provides you with a skeleton file for this, a Makefile
containing a rule to build the program, and a test to verify your success.

It is recommended to use an editor or an IDE (Integrated Development Environ-
ment) to work with C (or any other) code. On the lab PCs you can, for instance,
use Visual Studio Code or Kate – both offer syntax highlighting for C code. In order
to compile (and link) your program you can use the Makefile by calling either simply

$ make

or by calling make for the specific target:

$ make he l l owor ld

Content: Topics of slide set 00 Page 3 of 4

https://www.kernel.org/doc/Documentation/process/coding-style.rst

Prof. Dr. Oliver Hahm
Distributed Systems (SS 24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

The corresponding test can also be executed via Make by calling
$ make test

(Note: This will execute the tests for all programs in this exercise, so you will likely
get some FAILURE messages.)
You can also execute the specific test manually by calling:

$. / t e s t_he l l owor ld . py

Exercise 4 (Working with simple I/O)

In this exercise we will practice handling of command line arguments and file han-
dling via the standard C library. Note the necessary header files as described in the
man pages. System calls are documented via man pages in section 2, other library
functions can be found in section 3. For example, for the socket system call use

$ man 2 socket

or for the printf library call use

$ man 3 printf

1. Implement a program called concat which concatenates strings. The program
shall accept two parameters as command line arguments and provide two basic
operations:

• If the first argument is an integer value n, the string of the second argu-
ment shall be repeated n times and concatenated (without any whites-
paces).

• Otherwise both arguments shall be handled as strings and concatenated
directly to each other.

The concatenated string shall be printed to stdout.

2. Implement a program called concatfile which does the same as the program
above but stores the output into a file called concatresults.txt. The output
file shall be created if not existing and overwritten otherwise.

Some hints:

• You can check the results of your programs via the provided test scripts.

• You can use any function from the C standard library.

• Try to avoid memory allocation and buffer handling if possible. Keep it simple.

Content: Topics of slide set 00 Page 4 of 4

	(Clone the Repository)
	(Work with the Repository)
	(Programming C)
	(Working with simple I/O)

