

Internet of Things Seminar Introduction

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences Faculty 2: Computer Science and Engineering

oliver.hahm@fb2.fra-uas.de

https://teaching.dahahm.de

Agenda

- 1 About
- 2 Organizational
- 3 Introduction
- 4 Topics

Agenda

- 1 About
- 2 Organizational
- 3 Introduction
- 4 Topics

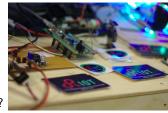
Prof. Dr. Oliver Hahm

- Study of Computer Science at Freie Universität Berlin
- Software Developer for ScatterWeb and Zühlke Engineering
- Research on IoT and Operating Systems

Contact

E-mail: oliver.hahm@fb2.fra-uas.de

Office hours: Tuesday 13:00 – 14:00, room 1-212



Join the RIOT!

RIOT is the friendly operating system for the IoT!

You're interested in

- ... programming the IoT?
- ...collaborate with hundreds of people from all over the world?
- ...contribute to a big FLOSS project?

Get in touch

Get in touch and do some hacking at the All RIOT event at the university!

Every two or three weeks 4pm in room 1-237.

Or look at https://allriot.dahahm.de

Agenda

- 1 About
- 2 Organizational
- 3 Introduction
- 4 Topics

Learning objectives

- understand the basic technologies for the Internet of Things,
- assess emerging technologies concerning their suitability,
- get acquainted quickly with new technologies, and
- develop new application fields.
- to search for, read, summarize and cite scientific literature on a large scale;
- to read and interpret national and international standards;
- to write a report as a scientific paper;
- to give a scientific talk.

Make sure that your report assesses the current state of implementations/deployments!

Organizational

- Team work (two students per group)
- Each team selects a topic from a given list
- Develop research questions
- Work on the research questions
- Submit a paper at mid-term
- Review a paper
- Receive and address reviews
- Prepare final report
- Present your work

campUAS

Enrolment Key: HahmIoT

RA-IoT Workshop

The final goal of this course is to successfully submit a paper to a local workshop:

The second International Workshop on Recent Advances in Internet of Things!

Dates

- October 20, 2023: Introduction and topic presentations
- October 27, 2023: Topic selection and introduction into scientific work
- December 15, 2023: Submission deadline
- January 08, 2024: Authors notification
- February 09, 2024: Camera ready paper submission
- tbd: Presentations

Assessment

- 50% for the report
 - Research question
 - Content
 - Structure
 - Presentation and format
 - Literature
 - Addressing the reviews
 - 20% for conducting the reviews
- 30% for the presentation

Further Information

Course page

All material regarding this course can be found at

https://teaching.dahahm.de

This includes

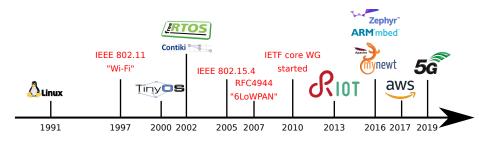
- Announcements
- Slides
- Dates

Workshop page

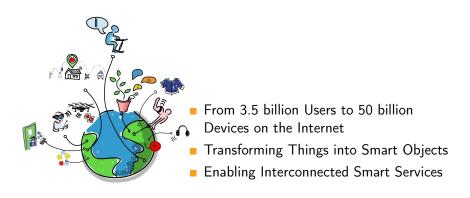
The official page of the workshop is https://www.ra-iot.de

Agenda

- 1 About
- 2 Organizational
- 3 Introduction
- 4 Topics


The Internet of Things

What is the Internet Of Things?


A Brief History of the Internet of Things

- 1982 A Coca-Cola vending machine was connected to the Internet at Carnegie Mellon University
- 1997 The Smart Dust research proposal at Berkeley kick-started research on Wireless Sensor Networks (WSNs)
- 1999 Kevin Ashton (P&G) coined the term Internet of Things
- 2008 Cisco identified the birth of IoT by the tipping point "when more 'things or objects' were connected to the Internet than people".

Connecting Smart Objects at Internet Scale

Use Cases

Mobile Health

Building & Home Automation

Micro & Nano Satellites

Industrial Automation

What are the main challenges and research areas for the Internet of Things?

Challenges

Low-end IoT Devices: Limited Resources (RFC7228)

nited Resources (RFC722

iotlab-m3

Senslab WSN430

Arduino Due

Memory < 1 Mb

■ Energy < 10 Wh

Requirements

- Interoperability
- Energy Efficiency
- Reliability
- Latency

- Low Cost Factor
- Autonomy
- Security
- Scalability

- Sustainability
- Privacy
- Safety

Agenda

- 1 About
- 2 Organizational
- 3 Introduction
- 4 Topics

Operating systems for low-end IoT devices

- The particular challenges of IoT applications mandate for new operating systems
- Typical candidates are:
 - RIOT
 - Zephyr
 - mbedOS
 - FreeRTOS
 - mynewt
 - Contiki
 - Contik
 - Linux

Cloud solutions for IoT applications

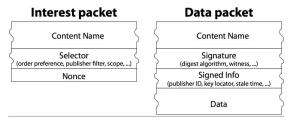
- The backend of an IoT application is typically hosted in the cloud
- IoT cloud providers offer various services like providing endpoints, data processing, device management, or software update services
- Multiple commercial cloud providers exist
 - Azure IoT Hub
 - Google Cloud
 - AWS IoT

Key management and secure bootstrapping for large scale constrained-node networks

- IoT applications often comprise a large number of devices
- Security is important, but requires to provision the devices with keys and/or certificates
- How to generate and deploy keys and/or certificates for a large number of devices?
- How to do life-cycle management of keys and certificates?

Clock synchronization protocols for low-end IoT devices

- Clock synchronization has been traditionally a topic in WSN research
- Research the evolution of protocols
- How can they be categorized?
- Which of them are appealing for IoT scenarios?
- What about approaches from more tradition IP networks?

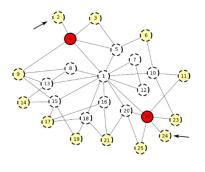

IoT privacy concerns

- IoT is by nature ubiquitous and pervasive
- Which threats to the users' privacy exist in modern IoT applications?
- What are the technological and social challenges to face here?
- What is the current situation?

Information-centric smart object networking

- Network users are typically interested in (named) content rather than locations
- Which approaches which deviate from traditional host-based networking exist?
- What are the advantages and challenges for ICN IoT?
- Where are we at with standardization?

Thread and Matter


- Protocol specifications are only building bricks and often leave important details to the user
- The Thread group created the Thread standard based on IPv6/6LoWPAN and various other existing specifications, mainly for home automation purposes.
- Matter is a recent effort by some bigger players on the market to build upon Thread.

THREAD

Routing protocols for constrained networks

- The constraints and requirements of (low-power) IoT networks pose new challenges on the routing protocols to be used inside and between local IoT networks.
 - Survey the evolution of WSN routing protocols.
- RPL, its flavors, and what else?
- MANET protocols?

Lightweight integrity and confidentiality

- How to encrypt and sign data in IoT networks?
- Channel security vs. object security
- Cryptography for constrained devices

Virtualization for low-power IoT devices

- Virtualisation allows for resource sharing among different applications while preserving proper separation.
- Typical low-power IoT devices have little resources, still in some cases virtualisation may make sense.
- Which approaches exist?

Operating System/Container Virtualization

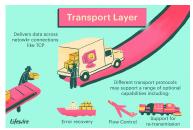
Software updates for IoT systems

- Software updates for IoT systems is a crucial cornerstone of security.
- SUIT and what else?
- Problems, challenges, approaches

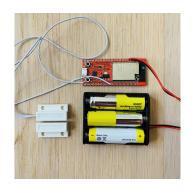
Survey on IoT applications

- Is IoT still missing a killer app?
- Many application scenarios: Home automation, building automation, industry automation, mobile health, connected cars
- What are the (economical, egological . . .) benefits from connected devices?

Low-power WANs



- Various technologies allow for long-range low-power wireless communication
 - Lora
 - Sigfox
 - NB-IoT
 - LTE-M
- What are the difference?
- What are the tradeoffs?


Transport layer issues for constrained-node networks

- Many (low-end) IoT solutions are in favor of UDP on the transport layer because of its low complexity and lightweight
- However, many traditional backend solutions (like MQTT or HTTP) are based on TCP
- Most recently a new Internet transport layer has evolved: QUIC
- What is the current state and what are the perspectives?
- What are challenges and what are the opportunities?

Evolution of low-power hardware

- Small microcontrollers are getting more and more powerful, energy-efficient, secure, and/or cheaper
- What are the latest developments?
- Which impact does this have on software design?

Device and fleet management

- In many IoT scenarios the amount of devices is huge
- How can these big networks be managed in a reasonable manner?
- What are the required services?
- Which providers do exist?

Programming low-end IoT devices

- Requirements and constraints of low-end loT devices influences the choice of the programming language
 - Available compiler (+ toolchain)
 - Tooling (IDE, debugger etc.)
 - Size of resulting binaries
 - Access to hardware
 - Safety and security concerns
 - Learning curve
 - Feature set

Low-code for IoT applications

Low-Code Development Platform

A low-code development platform (LCDP) provides a development environment used to create application software through a graphical user interface. A LCDP may produce entirely operational applications, or require additional coding for specific situations. LDDP can reduce the amount of traditional time spent, enabling accelerated delivery of business applications. A common benefit is that a wider range of people can contribute to the application's development—not only those with coding skills but require a good governance to be able adhere to common rules and regulations. LCDPs can also lower the initial cost of setup, training, deployment and maintenance.

Energy-harvesting

- How far are we with the vision of smart dust?
- Which ways to harvest energy from the environment do exist?
- What are the challenges for the software?

Energy-efficient wireless protocols

- (Wireless) Communication is typically one of the biggest energy consumer for low-end IoT devices
- Hence, efficient technologies are required

- Examples
 - IEEE 802.15.4
 - BLE
 - IEEE 802.11ah

Industrial IoT

- Real-time systems
- Deterministic networking
- Certification
- Resilience

Any Questions?