
Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Operating Systems

Process Interaction

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences

Faculty 2: Computer Science and Engineering

oliver.hahm@fb2.fra-uas.de

https://teaching.dahahm.de

December 06, 2022

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 1/52

https://teaching.dahahm.de

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Agenda

1 Process Interaction

2 Process Synchronization

3 Inter-Processes Communication (IPC)

4 Process Cooperation

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 2/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Agenda

1 Process Interaction

2 Process Synchronization

3 Inter-Processes Communication (IPC)

4 Process Cooperation

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 3/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Interprocess Communication (IPC)

In many cases processes do not operate isolated on separated data

Processes will typically. . .

call each other,
wait for each other, or
coordinate with each other

=⇒ They must interact with each other

Important questions regarding interprocess communication (IPC):

How can a process transmit information to others?
How can multiple processes access shared resources?

Question: What about threads?

Essentially threads are facing the same problems and challenges

However, the solutions can often be simpler because threads operate in the same address

space

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 4/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Critical Sections

If multiple processes run in parallel, the processes consist of. . .

Uncritical sections: The processes do not access shared data or carry
out only read operations on shared data
Critical sections: The processes carry out read and write operations on
shared data

Critical sections must not be processed by multiple processes at the

same time

For processes to be able to access a shared memory (=⇒ common
data), the operating system must provide mutual exclusion

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 5/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Race Condition

Unintended race condition of 2 processes, which want to modify the
value of the same record

The result of a process depends on the order or timing of other events
Frequent reason for bugs, which are hard to locate and fix

Problem: The occurrence of the symptoms depends on different events

The symptoms may be different or disappear with each test run

Race conditions can be avoided with the semaphore concept
(=⇒ slide 41)

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 6/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Critical Sections – Example: Print Spooler

Process X Process Y

next_free_slot = in; (Result: 16)
Process
switch

next_free_slot = in; (Result: 16)
Store record in next_free_slot; (Result: 16)
in = next_free_slot + 1; (Result: 17)

Process
switch

Store record in next_free_slot; (Result: 16)
in = next_free_slot + 1; (Result: 17)

The spooling directory is
consistent

But the entry of process Y
was overwritten by process
X and got lost

Such a situation is called race
condition

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 7/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Communication vs. Cooperation

Interprocess communication has 2 aspects:

Functional aspect: communication and cooperation
Temporal aspect: synchronization

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 8/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Forms of Interaction

Communication and cooperation base on synchronization
Synchronization is the most elementary form of interaction

Reason: communication and cooperation need a synchronization

between the interacting partners to obtain correct results

Therefore, we first discuss the synchronization

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 9/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Agenda

1 Process Interaction

2 Process Synchronization

3 Inter-Processes Communication (IPC)

4 Process Cooperation

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 10/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Signaling

Used to specify an execution order

Example: Section X of process PA must be executed before section Y of
process PB

The signal operation signals that process PA has finished section X
Perhaps, process PB must wait for the signal of process PA

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 11/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Most Simple Form of Signaling (Busy Waiting)

signal(s) wait(s)

set s is s set?

reset s

no

The figure shows busy waiting at the signal variable s

The signal variable can be located in a local file, for example
Drawback: CPU resources are wasted, because the wait operation
occupies the processor at regular intervals

This technique is also called spinlock or polling

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 12/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Securing critical Sections by Locking

Signaling always specifies the execution order

But if it is just necessary to ensure that there is no overlap in the
execution of the critical sections, it is possible to use the two operations
lock and unlock

Locking prevents the overlapping execution of two critical sections

Example: Critical Sections X of process PA and Y of process PB

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 13/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Locking and Unlocking Processes in Linux (1/2)

Useful system calls and standard library function to call the operations lock and unlock in Linux

sigsuspend, kill, pause and sleep

Alternative 1: Implementation of locking with the signals SIGSTOP
(No. 19) and SIGCONT (No. 18)

With SIGSTOP another process can be stopped
With SIGCONT another process can be reactivated

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 14/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Locking and Unlocking Processes in Linux (2/2)

Alternative 2: A local file serves as a locking mechanism for mutual
exclusion

Each process verifies before entering its critical section whether it can
open the file exclusively

e.g., with the system call open or the standard library function fopen

If this is not the case, it must pause for a certain time (e.g., with the
system call sleep) and then try again (busy waiting).

Alternatively, it can pause itself with sleep or pause and hope that the
process that has already opened the file unblocks it with a signal at the
end of its critical section (passive waiting)

Summary: Difference between Signaling and Locking

Signaling specifies the execution order
Example: Execute section X of process PA before section Y of PB

Locking secures critical sections
The execution order of the critical sections of the processes is not specified! It is just ensured that the
execution of critical sections does not overlap

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 15/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Problems caused by Locking

Starvation

If a process does never remove a lock, the other processes need to wait
infinitely long for the release

Deadlock

If several processes wait for resources, locked by each other, they lock
each other mutually
Because all processes, which are involved in the deadlock, must wait
forever, no one can initiate an event that resolves the situation

Source: https://i.redd.it/vvu6v8pxvue11.jpg

(author and license: unknown)

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 16/52

https://i.redd.it/vvu6v8pxvue11.jpg

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Conditions for Deadlock Occurrence

System Deadlocks. E. G. Coffman, M. J. Elphick, A. Shoshani. Computing Surveys, Vol. 3, No. 2, June 1971,
P.67-78
http://people.cs.umass.edu/~mcorner/courses/691J/papers/TS/coffman_deadlocks/coffman_deadlocks.pdf

A deadlock situation can arise if these conditions are all fulfilled
Mutual exclusion

At least one resource is either occupied by exactly one process or is

available =⇒ non-sharable resource

Hold and wait
A process, which currently occupies at least one resource, requests

additional resources which are being held by another process

No preemption
Resources occupied by a process cannot be deallocated by the OS but

only be released by the holding process voluntarily

Circular wait
A cyclic chain of processes exists

Each process requests a resource that the next process in the chain

occupies.

If one of these conditions is not fulfilled, no deadlock can occur
Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 17/52

http://people.cs.umass.edu/~mcorner/courses/691J/papers/TS/coffman_deadlocks/coffman_deadlocks.pdf

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Resource Graphs

The relations of processes and resources can be visualized using
directed graphs
In this way, deadlocks can also be modeled

The nodes of a resource graph are:
Processes: Are shown as circles

Resources: Are shown as rectangles

An edge from a process to a resource means:
The process is blocked because it waits for the resource

An edge from a resource to a process means:
The process occupies the resource

A good description of resource graphs provides the book Betriebssysteme – Eine Einführung, Uwe Baumgarten,

Hans-Jürgen Siegert, 6th Edition, Oldenbourg Verlag (2007), Chapter 6

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 18/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Deadlock Detection with Matrices

One drawback of deadlock detection with resource graphs is that only
individual resources can be represented with it

If multiple copies (instances) of a resource exist, then graphs are not
suited for the visualisation and detection of deadlocks

If multiple copies of a resource exist, a matrices-based algorithm can be

used, which requires two vectors and two matrices

We specify two vectors
Existing resource vector

Indicates the number of existing resources of each class

Available resource vector

Indicates the number of free resources of each class

Additionally two matrices are required
Current allocation matrix

Indicates, which resources are currently occupied by the processes

Request matrix

Indicates, which resource the processes would like to occupy

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 19/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Deadlock Detection with Matrices – Example (1/2)

Source of the example: Tanenbaum. Moderne Betriebssysteme. Pearson. 2009

Existing resource vector =
(

4 2 3 1
)

Available resource vector =
(

2 1 0 0
)

Four resources of class 1 exist

Two resources of class 2 exist

Three resources of class 3 exist

One resource of class 4 exist

Two resources of class 1 are available

One resource of class 2 is available

No resources of class 3 are available

No resources of class 4 are available

Current allocation matrix =





0 0 1 0

2 0 0 1

0 1 2 0



 Request matrix =





2 0 0 1

1 0 1 0

2 1 0 0





Process 1 occupies one resource of

class 3

Process 2 occupies two resources of

class 1 and one resource of class 4

Process 3 occupies one resource of

class 2 and two resources of class 3

Process 1 is blocked, because no free

resources of class 4 exist

Process 2 is blocked, because no free

resources of class 3 exist

Process 3 is not blocked

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 20/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Deadlock Detection with Matrices – Example (2/2)

If process 3 finished execution, it deallocates its resources

Available resource vector =
(

2 2 2 0
)

Request matrix =





2 0 0 1

1 0 1 0

− − − −





Two resources of class 1 are available

Two resources of class 2 are available

Two resources of class 3 are available

No resources of class 4 are available

Process 1 is blocked, because no free

resources of class 4 exist

Process 2 is not blocked

If process 2 finished execution, it deallocates its resources

Available resource vector =
(

4 2 2 1
)

Request matrix =





2 0 0 1

− − − −

− − − −





Process 1 is not blocked =⇒ no deadlock in this example

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 21/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Conclusion about Deadlocks

Deadlock detection is complicated and causes overhead

In all operating systems, deadlocks can occur:
Full process table

No more new processes can be created

Maximum number of inodes allocated

No new files or directories can be created

The probability that this happens is low, but 0

Such potential deadlocks are accepted because an occasional deadlock
is not as troublesome as the otherwise necessary restrictions (e.g., only
1 running process, only 1 open file, more overhead)

Sometimes it is tolerated that deadlocks can occur

A deadlock which statistically occurs every five years is not a problem in a
system which crashes because of hardware failures or other software
problems one time per week

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 22/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Agenda

1 Process Interaction

2 Process Synchronization

3 Inter-Processes Communication (IPC)

4 Process Cooperation

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 23/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Communication of Processes

Types of IPC

Files
Signals/Flags
Shared Memory
Message Queues
Pipes
Sockets

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 24/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Files

An resource stored in the file system which can be accessed by multiple
processes

Linux

File descriptors represent file handles
Part of the POSIX API
Per default every process owns three file descriptors (stdin, stdout,
and stderr)
File descriptors can be used for, e.g., reading, writing, seeking, or
truncating a file

RIOT

Virtual File System may be implemented by various backends
Not all IoT devices provide persistent memory
If available, persistent memory is often realized on flash memory →

wear leveling is required

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 25/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Signals and Flags

Notify another process about the occurrence of an event

Linux

POSIX signals
Standardized messages to trigger a certain behaviour
The receiver process gets interrupted
If a signal is unhandled by the receiver, it will terminate

RIOT

Thread flags
Optional kernel feature
Notify threads of conditions in a race-free and allocation-less way

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 26/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Shared Memory

IPC via shared memory is also called memory-based communication

Shared memory segments are memory areas which can be accessed by
multiple processes

These memory areas are mapped in the address space of multiple processes

The processes need to coordinate the access operations by themselves and
ensure that their memory requests are mutually exclusive

A receiver process, cannot read data from the shared memory, before the sender
process has finished its current write operation
If access operations are not coordinated carefully =⇒ inconsistencies

RIOT

Since most microcontrollers do not provide a MMU (memory management unit) all processes can
typically access all memory regions . . .

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 27/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Shared Memory in Linux/UNIX

Linux/UNIX operating systems contain a shared memory table, which
contains information about the existing shared memory segments

This information includes: Start address in memory, size, owner
(username and group) and privileges

Shared memory objects are accessed in a similar manner as files

A shared memory
segment is always
addressed via its
index number in the
shared memory table

Advantage: A shared memory segment which is not attached to a process is
not erased by the operating system automatically

When the operating system is rebooted, the shared memory segments and their contents are lost

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 28/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Message Queues

Are linked lists with messages

Operate according to the FIFO principle

Processes can store data inside and picked them up from there

Benefit: Even after the termination of the process which created the
message queue the data inside the message queue stays available

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 29/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Message Queues

Linux

POSIX and System V message queues
Queues are named and can be shared via this name between processes
Message have priorities

RIOT

Kernel messages and mailboxes
Optional feature
Block and non-block API available
A thread may create a message buffer
Mailboxes can be accessed by multiple processes

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 30/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Anonymous Pipes (1/2)

Pipes can be anonymous pipes or named pipes (see slide 33)

An anonymous pipe. . .

A buffered unidirectional communication channel between two processes
(⇒ simplex FIFO)
One process accesses the write end, the other the read end of the pipe

⇒ If communication in both directions shall be possible at the same time

two pipes are necessary – one for each communication direction

has a limited capacity and can block on both ends:

If the pipe is filled =⇒ the writing process gets blocked

If the Pipe is empty =⇒ the reading process gets blocked

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 31/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Anonymous Pipes (2/2)

In Linux pipes are created with the system call pipe()

The kernel creates an −→ inode and two file descriptors (handles)
Processes access the access identifiers with read() and write()

system calls (or standard library functions) similar to files

When child processes are created with fork(), the child processes also
inherit access to the file descriptors

Anonymous pipes allow process communication only between closely
related processes

Only processes, which are closely related via fork() can communicate
with each other via anonymous pipes
If the last process, which has access to an anonymous pipe, terminates,
the pipe gets erased by the operating system

Overview of the pipes in Linux/UNIX: lsof | grep pipe

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 32/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Named Pipes

Processes, which are not closely related with each other, can
communicate via named pipes

These pipes can be accessed by using their names

They are created in C by: mkfifo("<pathname>",<permissions>)

Any process, which knows the name of a pipe, can use the name to
access the pipe and communicate with other processes

The operating system ensures mutual exclusion

At any time, only a single process can access a pipe

Named pipes are not erased automatically by the operating system
(unlike anonymous pipes)

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 33/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Different Types of Sockets

Connectionless sockets (= datagram sockets)

Use the Transport Layer protocol UDP
Advantage: Better data rate as with TCP

Reason: Lesser overhead for the protocol

Drawback: Segments may arrive in wrong sequence or may get lost

Connection-oriented sockets (= stream sockets)

Use the Transport Layer protocol TCP
Advantage: Better reliability

Segments cannot get lost

Segments always arrive in the correct sequence

Drawback: Lower data rate as with UDP

Reason: More overhead for the protocol

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 34/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Using Sockets

Almost all major operating systems support sockets

Advantage: Better portability of applications

Functions for communication via sockets:

Creating a Socket:
socket()

Binding a socket to a port number and making it ready to receive data:
bind(), listen(), accept() and connect()

Sending/receiving messages via the socket:
send(), sendto(), recv() and recvfrom()

Closing eines Socket:
shutdown() or close()

Overview of the sockets in Linux/UNIX: netstat -n or lsof | grep socket

Examples of Interprocess communication via sockets (TCP and UDP) in Linux can be found on the website of this
course

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 35/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Connection-less Communication via Sockets – UDP

Client

Create socket (socket)
Send (sendto) and receive data (recvfrom)
Close socket (close)

Server

Create socket (socket)
Bind socket to a port (bind)
Send (sendto) and receive data (recvfrom)
Close socket (close)

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 36/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Connection-oriented Communication via Sockets – TCP

Client

Create socket (socket)
Connect client with server socket (connect)
Send (send) and receive data (recv)
Close socket (close)

Server

Create socket (socket)
Bind socket to a port (bind)
Make socket ready to receive (listen)

Set up a queue for connection requests.

Specifies the number of connection requests,

which can be stored in the queue

Server accepts connections (accept)

Fetch the first connection request from the

queue

Send (send) and receive data (recv)
Close socket (close)

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 37/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Comparison of Communication Systems

Shared Memory Message Queues (anon./named) Sockets
Pipes

Scheme Memory-based Message-based Message-based Message-based
Bidirectional yes no no yes
Platform independent no no no yes
Processes relation required no no for anon. pipes no
Common address space required yes yes yes no
Bound to a process no on yes yes
Automatic synchronization no yes yes yes

Advantages of message-based communication versus memory-based
communication:

The operating system takes care about the synchronization of accesses
=⇒ comfortable
Can be used in distributed systems without a shared memory
Better portability of applications

Storage can be integrated via network connections

This allows memory-based communication between processes on different independent systems

The problem of synchronizing the accesses also exists here

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 38/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Agenda

1 Process Interaction

2 Process Synchronization

3 Inter-Processes Communication (IPC)

4 Process Cooperation

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 39/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Cooperation

Cooperation

Semaphor
Mutex

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 40/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Semaphore

In order to protect (lock) critical sections not only the already
discussed locks can be used but also semaphores

First published in 1965 by Edsger W. Dijkstra

A semaphore is a counter lock S with operations P(S) and V(S)

V comes from the dutch verhogen = raise
P comes from the dutch proberen = try (to reduce)

The access operations are atomic =⇒ can not be interrupted
(indivisible)

May allow multiple processes accessing the critical section

In contrast, locks (=⇒ slide 13) can only be used to allow a single
process entering the critical section at the same time

Cooperating sequential processes. Edsger W. Dijkstra (1965)

https://www.cs.utexas.edu/~EWD/ewd01xx/EWD123.PDF

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 41/52

https://www.cs.utexas.edu/~EWD/ewd01xx/EWD123.PDF

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Semaphore Access Operations (1/3)

A Semaphore consists of 2 Data Structures

COUNT: An integer, non-negative counter variable.
Specifies how many processes can pass the semaphore now without getting blocked

A waiting room for the processes, which wait until they are allowed to pass the semaphore
The processes are in blocked state until they are transferred into ready state by the
operating system when the semaphore allows to access the critical section

Initialization: First, a new semaphore is created or an existing one is
opened

For a new semaphore, the counter variable is initialized at the beginning
with a non-negative initial value

1 // apply the INIT operation on semaphore SEM

2 SEM.INIT(unsigned int init_value) {

3 // initialize the variable COUNT of Semaphor SEM

4 // with a non -negative initial value

5 SEM.COUNT = init_value;

6 }

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 42/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Semaphore Access Operations (2/3) Image Source: Carsten Vogt

P operation (reduce): It checks the value of the counter variable

If the value is 0, the process becomes blocked
If the value > 0, it is reduced by 1

1 SEM.P() {

2 // if the counter variable = 0, the process becomes blocked

3 if (SEM.COUNT == 0)

4 < block >

5 // if the counter variable is > 0, the counter variable

6 // is decremented immediately by 1

7 SEM.COUNT = SEM.COUNT - 1;

8 }

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 43/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Semaphore Access Operations (3/3) Image Source: Carsten Vogt

V operation (raise): It first increases the counter variable by value 1

If processes are in the waiting room, one process gets deblocked
The process, which just got deblocked, continues its P operation and
first reduces the counter variable

1 SEM.V() {

2 // counter variable = counter variable + 1

3 SEM.COUNT = SEM.COUNT + 1;

4 // if processes are in the waiting room , one gets deblocked

5 if (< SEM waiting room is not empty >)

6 < deblock a waiting process >

7 }

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 44/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Producer/Consumer Example (1/3)

A producer sends data to a consumer

A buffer with limited capacity is used to minimize the waiting times of
the consumer

Data is placed into the buffer by the producer and the consumer
removes data from the buffer

Mutual exclusion is mandatory in order to avoid inconsistencies

If the buffer is full =⇒ producer must be blocked

If the buffer is empty =⇒ consumer must be blocked

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 45/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Source: Kenneth Baclawski (Northeastern University in Boston), Image source: Michael Vigneau (license: unknown)

http://www.ccs.neu.edu/home/kenb/tutorial/example.gif

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 46/52

http://www.ccs.neu.edu/home/kenb/tutorial/example.gif

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Producer/Consumer Example (2/3)

Three semaphores are used to synchronize access to the buffer
empty

filled

mutex

The semaphores filled and empty are used in opposite to each other
empty counts the number of empty locations in the buffer and its value
is reduced by the producer (P operation) and raised by the consumer (V
operation)

empty = 0 =⇒ buffer is completely filled =⇒ producer is blocked

filled counts the number of data packets (occupied locations) in the
buffer and its value is raised by the producer (V operation) and reduced
by the consumer (P operation)

filled = 0 =⇒ buffer is empty =⇒ consumer is blocked

The semaphore mutex is used to ensure for the mutual exclusion

Binary Semaphores

Binary semaphores are initialized with value 1 and ensure that 2 or more processes cannot simultaneously
enter their critical sections

Example: The semaphore mutex from the producer/consumer example

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 47/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Producer/Consumer Example (3/3)

1 typedef int semaphore; // semaphores are of type integer

2 semaphore filled = 0; // counts the number of occupied locations in the buffer

3 semaphore empty = 8; // counts the number of empty locations in the buffer

4 semaphore mutex = 1; // controls access to the critial sections

5 void producer (void) {

6 int data;

7 while (TRUE) { // infinite loop

8 createDatapacket(data); // create data packet

9 P(empty); // decrement the empty locations counter

10 P(mutex); // enter the critical section

11 insertDatapacket(data); // write data packet into the buffer

12 V(mutex); // leave the critical section

13 V(filled); // increment the occupied locations counter

14 }

15 }

16 void consumer (void) {

17 int data;

18 while (TRUE) { // infinite loop

19 P(filled); // decrement the occupied locations counter

20 P(mutex); // enter the critical section

21 removeDatapacket(data); // pick data packet from the buffer

22 V(mutex); // leave the critical section

23 V(empty); // increment the empty locations counter

24 consumeDatapacket(data); // consume data packet

25 }

26 }

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 48/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Semaphores in Linux (System V) Image Source: Carsten Vogt

The semaphore concept of Linux differs from the Dijkstra concept
The counter variable can be incremented or decremented with a P or V
operation by more than value 1
Multiple access operations on different semaphores can be carried out in
an atomic way, which means that they are indivisible

Linux systems maintain a
semaphore table, which contains
references to arrays of semaphores

Individual semaphores are
addressed using the table index
and the position in the group

Linux/UNIX operating systems provide three system calls for working with System V semaphores

semget(): Create new semaphore or a group of semaphores or open an existing semaphore

semctl(): Request or modify the value of an existing semaphore or of a semaphore group or erase a semaphore

semop(): Carry out P and V operations on semaphores

Information about existing semaphores (System V) provides the command ipcs

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 49/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Mutexes

If the Semaphore feature of counting is not required a simplified
alternative, the mutex can be used instead

Mutexes (derived from Mutual Exclusion) are used to protect critical
sections, which are allowed to be accessed by only a single process at
any given moment

Mutexes can only have two states: occupied and not occupied

Mutexes have the same functionality as binary semaphores

Several implementations of the mutex concept exist

C standard library: mtx_init, mtx_unlock („V operation“), mtx_lock („P operation“), mtx_trylock,
mtx_timedlock, mtx_destroy

POSIX threads: pthread_mutex_init, pthread_mutex_unlock, pthread_mutex_lock, pthread_mutex_trylock,
pthread_mutex_timedlock, pthread_mutex_destroy

C standard library (Sun/Oracle Solaris): mutex_init, mutex_unlock, mutex_lock, mutex_trylock, mutex_destroy

Focus: Cooperation of threads of a process (intra-process
synchronization)

Cooperation of processes (inter-process synchronization) is not always
possible and if, then via a shared memory segment (SystemV or POSIX)

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 50/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

Monitor and erase IPC Objects

Information about existing (SystemV) shared memory segments,
(System V) message queues and (System V) semaphores provides the
command ipcs

The easiest way to erase such shared memory segments, message
queues and semaphores from the command line is the command ipcrm

ipcrm [-m shmid] [-q msqid] [-s semid]

[-M shmkey] [-Q msgkey] [-S semkey]

POSIX memory segments and POSIX semaphores can be inspected
and manually erased in the directory /dev/shm

POSIX message queues can be inspected and manually erased in the
directory /dev/mqueue

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 51/52

Process Interaction Process Synchronization Inter-Processes Communication (IPC) Process Cooperation

You should now be able to answer the following
questions:

What are critical sections and race
conditions?

What is synchronization?

How can critical sections be secured via
blocking?

Which problems are described by (starvation
and deadlocks)?

How does deadlock detection with matrices
work?

What are different options to implement
communication between processes?

How can critical sections be protected via
semaphores (and mutex)?

Prof. Dr. Oliver Hahm – Operating Systems – Process Interaction – WS 22/23 52/52

	Process Interaction
	Process Synchronization
	Inter-Processes Communication (IPC)
	Process Cooperation

