Operating Systems Introduction

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
 oliver.hahm@fb2.fra-uas.de
 https://teaching.dahahm.de

October 17, 2023

Generations of Computer Systems and Operating Systems

Core Functionalities of Operating Systems

Generations of Computer Systems and Operating Systems

Prof. Dr. Oliver Hahm - Operating Systems - Introduction - WS 23/24

Generations of Computer Systems and Operating Systems

What do you already know?

Let's go to the survey again: https://pingo.coactum.de/977183

Generations of Computer Systems and Operating Systems

What do you already know?

Let's go to the survey again: https://pingo.coactum.de/977183 Which Operating systems do you know?

What do you already know?

Let's go to the survey again: https://pingo.coactum.de/977183 Which Operating systems do you know? What are the functionalities of an Operating System?

Some Examples

Definition: Operating System

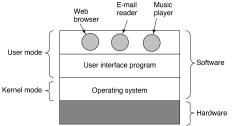
Andrew S. Tanenbaum

An operating system "[provides] application programmers (and application programs, naturally) a clean abstract set of resources instead of the messy hardware ones and managing these hardware resources."

Definition: Operating System

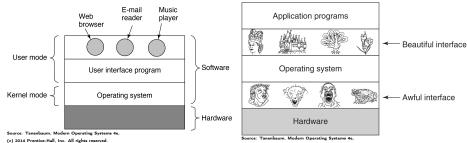
Andrew S. Tanenbaum

An operating system "[provides] application programmers (and application programs, naturally) a clean abstract set of resources instead of the messy hardware ones and managing these hardware resources."


William Stallings

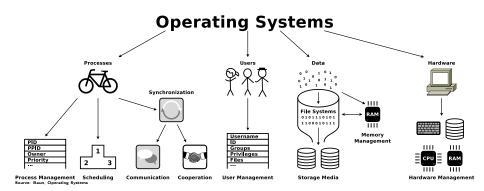
"An OS is a program that controls the execution of application programs, and acts as an interface between applications and the computer hardware. It can be thought of as having three objectives:

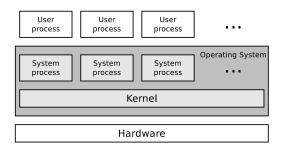
- Convenience [...]
- Efficiency [...]
- Ability to evolve"


Generations of Computer Systems and Operating Systems

Abstraction layer for the applications

Source: Tanenbaum, Modern Operating Systems 4e, (c) 2014 Prentice-Hall, Inc. All rights reserved.


Abstraction layer for the applications


(c) 2014 Prentice-Hall, Inc. All rights reserved.

Generations of Computer Systems and Operating Systems

Resource Manager

Basic Structure of an Operating System

- User processes process the users' jobs
- System processes provide services of the operating system
- The operating system core (⇒ kernel) contains all components of the operating system, which are not implemented as system processes

Operating Systems are Part of the System Software

System software controls the operation of a computer, assists users and their applications in making use of the hardware and controls the use and allocation of the available hardware resources

Why do we need an Operating System?

Why do we need an Operating System?

- Abstract hardware interfaces
- Make software portable
- Share resources and allow for separation
- Efficient usage of resources

Why do we need an Operating System?

- Abstract hardware interfaces
- Make software portable
- Share resources and allow for separation
- Efficient usage of resources

 \Longrightarrow Software development without an Operating System is painful

Two Challenges

Prof. Dr. Oliver Hahm - Operating Systems - Introduction - WS 23/24

Two Challenges

Name an electronic device without a computer!

Your Turn

Two Challenges

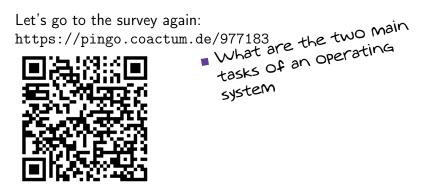
- Name an electronic device without a computer!
- Name a module from your study program that is completely unrelated to Operating Systems!

Your Turn

Two Challenges

- Name an electronic device without a computer!
- Name a module from your study program that is completely unrelated to Operating Systems!

Which tasks in software development would Be much more cumbersome without an Operating System?


Generations of Computer Systems and Operating Systems


Let's go to the survey again: https://pingo.coactum.de/977183

Generation	Time period	Technological progress
0	until 1940	(Electro-)mechanical calculating machines \implies no software!
1	1940 – 1955	Electron tubes, relays, jack panels
2	1955 – 1965	Transistors, batch processing
3	1965 – 1980	Integrated circuits, time sharing
4	1980 - 2000	Very large-scale integration, microprocessors, PCs/Workstations
5	2000 until ?	Distributed systems, the network is the computer, virtualization

Quote from the magazine Popular Mechanics (1949)

"In the future, computers may weigh no more than 1.5 tonnes."

Generation Zero (until 1940)

- Mechanical/Electromechanical calculating machines
- Examples:
 - Mechanical calculator of Wilhelm Schickard (1623)
 - Offers addition, subtraction and carry mechanism ("Zehnerübertragung")
 - Mechanical calculator Pascaline of Blaise Pascal (1643)
 - \blacksquare Offers addition, subtraction, \leq 8 digits and carry mechanism
 - Mechanical calculator of Gottfried Wilhelm Leibniz (1673)
 - Offers all 4 basic arithmetic operations, \leq 6 digits and carry mechanism

Image Source: Wikipedia (Herbert Klaeren, CC-BY-SA-3.0)

Image Source: Heinz Nixdorf Museum

Image Source: Deutsches Museum

15/34

No software in this generation \Longrightarrow no operating systems

Prof. Dr. Oliver Hahm - Operating Systems - Introduction - WS 23/24

Generation Zero (until 1940)

Image Source: flickr.com (Jitze Couperus, CC-BY-2.0)

- Another example:
 - Difference Engine No.1 for solving polynomial functions of Charles Babbage (1832)

Generation Zero (until 1940)

- Another example:
 - Hollerith tabulating machine of Herman Hollerith (1888)
 - Includes: Tabulating machine, punch card sorter, key punch (card punch) and punch card reader
 - 1890: The tabulating machine is used to tabulate the US census
 - 1924: The company of Hollerith is renamed to International Business Machines Corporation (IBM)



Image source: United States Census Bureau

Image source: IBM

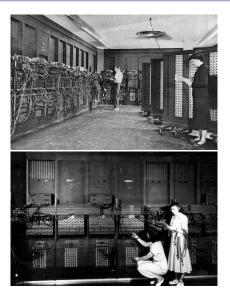
1^{st} Generation (1940 - 1955)

- The 1st generation of computer systems was constructed during WW2 → Konrad Zuse, John von Neumann
- Requirements, a universal computer must satisfy:
 - Stored program
 - Conditional jump (GOTO)
 - Separation of memory and CPU
- Computers were machines with partially > 10,000 tubes or relays, which worked slow and error prone
- No operating systems and programming languages in this generation
- Programs were implemented via circuits in patch bays
 - The user/programmer launches one program, which directly accesses the hardware

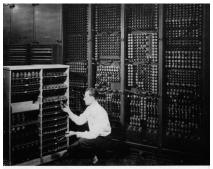
Some systems of the 1st Generation

Image Source: Own work (12.12.2008)

Computer	Development	Storage/CPU separated	Conditional jumps	Program- ming	Internal encoding	Number representations	Technology
Z1 / Z3	1936-1941	yes	no	รพั	binary	floating point	mechanical (relays)
ABC	1938-1942	yes	no	HW	binary	fixed-point	electronic
Harvard Mark 1	1939-1944	no	no	SW	decimal	fixed-point	electronic
ENIAC	1943-1945	no	partially	HW	decimal	fixed-point	electronic
Manchester	1946-1948	yes	yes	SW	binary	fixed-point	electronic
EDSAC	1946-1948	yes	yes	SW	binary	fixed-point	electronic


Zuse Z3 (1941)

- The world's first working programmable, digital computer (based on relay technology)
- First computer, which implemented the binary system


Generations of Computer Systems and Operating Systems

1st Generation: ENIAC (1944)

Image Source: US Army (Public Domain)

- Electronic Numerical Integrator and Computer (ENIAC)
- First electronic general-purpose computer (with electron tubes)

Replacing a bad tube meant checking among ENIAC's 19,000 possibilities.

2nd Generation (1955 – 1965)

Image Source: Flickr (born1945, CC-BY-2.0)

- Early 1950s: Punch cards replace the patchbays
- Mid-1950s: Introduction of the transistors:
 - \implies Computer systems become more reliable

- Programs were written in early programming languages like FORTRAN or COBOL
 - written down by the programmer on form sheets,
 - punched from coders into punch cards
 - and handed over to the operator (administrator)
- The operator...
 - coordinates the order (schedule) of programs (jobs)
 - equips the computer with the punch cards
 - loads the compiler from the magnetic tape
 - hands over the printed out computation result

2^{nd} Generation: Batch Processing (1/4)

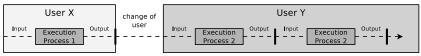
- Operating systems of this generation were all batch processing operating systems
- Objective: Maximize CPU utilization

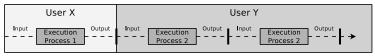
- Each program needs to be provided completely (with all input data!) before the execution may begin
- Batch processing is well suited for the execution of routine tasks

Image Source: IBM (the image shows an IBM 7090 from 1959) http://www.computer-history.info/Page4.dir/pages/IBM.7090.dir/images/ibm.7090.jpg

 Today's systems still allow to process program sequences automatically (e.g., non-interactive batch files and shell scripts)

2^{nd} Generation: Batch Processing (2/4)

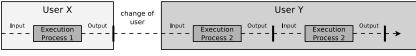

Single user mode with singletasking without batch processing


Time

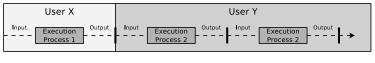
2nd Generation: Batch Processing (2/4)

Single user mode with singletasking without batch processing

Batch processing


Time

■ Batch Processing ⇒ Acceleration via automation


Generations of Computer Systems and Operating Systems

2^{nd} Generation: Batch Processing (2/4)

Single user mode with singletasking without batch processing

Batch processing



Time

- Batch Processing ⇒ Acceleration via automation
- Drawback: The CPU is still not utilized in an optimal way
 - \Rightarrow During input/output operations the CPU is idle

Generations of Computer Systems and Operating Systems

2nd Generation: Batch Processing (3/4)

Frontend computer for Mainframe for program execution reading the punch cards and storing their information on tape

Backend computer for reading the output tapes and printing the results

Frontend/backend computers free the mainframe from slow I/O operation

- Data can be read from tape much faster than from punch cards and data can be stored on tape much faster than printed out
- \blacksquare Spooling removes I/O workload from the CPU by using additional HW
 - I/O is carried out concurrently with the processing of other jobs

Today, computers have in addition to the CPU, specific I/O processors with DMA capability (Direct Memory Access)

These write data directly into the main memory and fetch the results from there

Generations of Computer Systems and Operating Systems

2nd Generation: Batch Processing (4/4)

Image source: IBM Archives
https://onfoss.com/a-timeline-ofcomputer-interface-technology/

Spooling is still used today

- e.g., spooling processes for printing
- Batch processing is usually non-interactive
 - A started process is executed without any user interaction until it terminates or an error occurs
- Batch processing operating systems of the 2nd generation only implement singletasking (⇒ slide set 3)
 - The operating system allows only the execution of one program at once
 - Starting a second program is only possible after the first one has finished

Some Operating Systems of the 2nd Generation

Atlas Supervisor, GM-NAA I/O, UMES, SHARE, IBSYS

Prof. Dr. Oliver Hahm - Operating Systems - Introduction - WS 23/24

Core Functionalities of Operating Systems

Generations of Computer Systems and Operating Systems

"For historic reasons..."

Why do many E-mail clients (Mail User Agents (MUAS)) and editors insert line Breaks after 80 characters?

2nd Generation: Punch Cards

 \Rightarrow The standard line size of \leq 80 characters in E-mails and text files dates back to the punch card

- Each punch card usually represents a single line of text with 80 characters or a corresponding number of binary data
- 12 punch hole positions for the encoding of each character
 - Digits are encoded with a single hole in the corresponding row
 - Letters and special characters are encoded by punching multiple holes in the column

3rd Generation (1960 – 1980)

- Early 1960s: Integrated circuits are available
 - \implies More powerful, smaller and less expensive computers
- 1960s:
 - Improvement of the batch processing systems to allow the execution of multiple jobs during the same period of time ⇒ multitasking
 - First simple **memory management** (*fixed partitions*) ⇒ slide set 5
- 1970s: Time-sharing (interactive mode)
 - One central unit, multiple terminals
 - Each user gets a user process when logging in
- End of the 1970s: Development of the microprocessor
 - \implies Development of the home computer / personal computer (PC)
 - 1977: Apple II. First home computer
 - 1981: IBM PC. Top selling computer architecture (Intel 80x86)

Some Operating Systems of the 3rd Generation

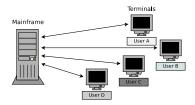
BESYS, CTSS, OS/360, CP/CMS, Multics, Unics (later Unix), DEC DOS-11, DEC RT-11, Version 6/7 Unix, DEC CP/M, Cray Operating System, DEC VMS

Prof. Dr. Oliver Hahm – Operating Systems – Introduction – WS 23/24

Some systems of the 3rd Generation Image Source: Clemens Pfeiffer (CC-BY-2.5)

Computer	Development
CDC 6600	1964
IBM System/360	1964
PDP-8	1965
ILLIAC IV	1969
CRAY 1	1976

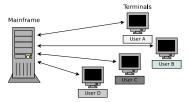
Special features


First supercomputer 8-bit character size. Flexible architecture First commercial minicomputer from DEC First multiprocessor computer Supercomputer

This generation includes also...

- first decentralized computer network (ARPANET)
- computer networks to connect terminals with mainframe computers via serial lines (e.g., IBM Systems Network Architecture)
- proprietary interconnection networks (e.g., DECnet)

3^{rd} Generation: Time-sharing (1/2)



Multitasking

- Multiple users work with a single computer in a simultaneous and competitive way by sharing the available computing time of the CPU
 - Objective: Fair distribution of the computing time

3^{rd} Generation: Time-sharing (1/2)

Multitasking

- Multiple users work with a single computer in a simultaneous and competitive way by sharing the available computing time of the CPU
 - Objective: Fair distribution of the computing time
- The computing time is distributed via time slices
 - The distribution can carried out according to different strategies
- Multiple users can work interactively and simultaneously with a computer via terminals
 —> Multi-user operation (
 —> next slide set)
- The programs of the individual users are independent of each other
- The pseudo-parallel program or process execution is called multitasking (⇒ next slide set)
 - **Objective:** Minimizing the response time

3rd Generation: Time-sharing (2/2)

Because of time-sharing, new concepts were required:

- Memory protection: The memory is split and running programs are separated from each other
 - This way, a bug or crash of a single program does not affect the stability of other programs and the total system
- File systems, which allow quasi-simultaneous file access
- Swapping: Process of storing and removing data to/from main memory from/into background memory (HDDs/SSDs)
- Scheduling: Automatic creation of an execution plan (schedule), which is used to allocate time limited resources to users or their processes

4th Generation (1980 – 2000)

- This generation provides highly integrated circuits and an exponentially growing integration density of electronic components
 - CPUs become more powerful and cheaper
 - The main memory capacity rises
- High computing power can be installed on every workplace
 - Workstations become standard in the in the professional sector
 - Popularity of home computers and personal computers (PC) rises
 - Main objective of operating systems: Intuitive user interfaces for users who do not want to know anything about the underlying hardware

Some Operating Systems of the 4th Generation

QDOS, Xenix, MS-DOS, PC-DOS, QNX, GNU project, SunOS, MacOS, AmigaOS, Atari TOS, Windows, IBM AIX, GEOS, SGI IRIX, MINIX, OS/2, NeXTSTEP, SCO UNIX, Linux, BeOS, Haiku, Google Fuchsia

- Computer networks with open standards became popular
 - Ethernet, Token Ring, WLAN (\implies computer networks course)

5th Generation (2000 – ????)

Some key words from the 5th generation:

- The network is the computer
- Distributed systems \implies Cluster-, Cloud-, Grid-, P2P-Computing
- \blacksquare Resources are requested and rent when needed \Longrightarrow on demand
- Multicore processors and parallel applications
- Virtualization ⇒ VMware, XEN, KVM, Docker...
- Free Software (OpenSource) ⇒ Linux (Android), BSD,...
- Communication everywhere ⇒ mobile systems
- Internet of Things ⇒ RIOT, Zephyr, AWS FreeRTOS,...
- Keywords for later generations:
 - Quantum computers (maybe 6th or 7th generation)

Generations of Computer Systems and Operating Systems ○○○○○○○○○○○○○○○○○

At the end of the semester you...

- know and understand the functioning of the core functionalities of operating systems
- unterstand the functioning of the most important hardware components
- have basic skills in working with Linux
- have basic skills in shell scripting

