Operating Systems Computer System Overview

Prof. Dr. Oliver Hahm

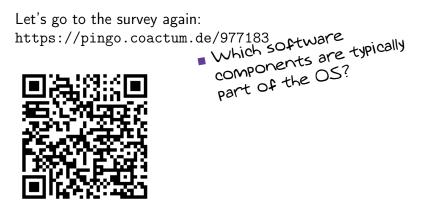
Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
 oliver.hahm@fb2.fra-uas.de
 https://teaching.dahahm.de

November 07, 2023

Input/Output Devices

Computer Data Storage

What do you already know?


Let's go to the survey again: https://pingo.coactum.de/977183

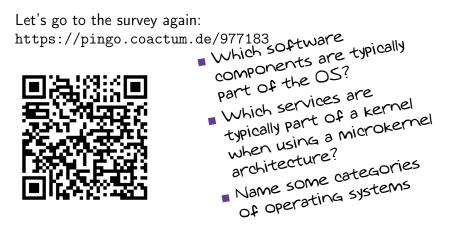
Input/Output Devices

Computer Data Storage

What do you already know?

Input/Output Devices

Computer Data Storage


What do you already know?

Input/Output Devices

Computer Data Storage

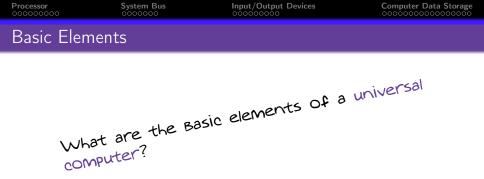
|What do you already know?|

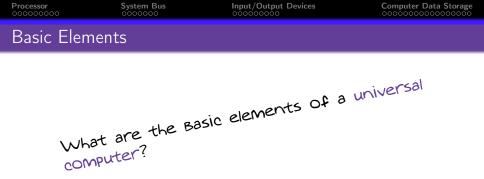
Input/Output Devices

Computer Data Storage

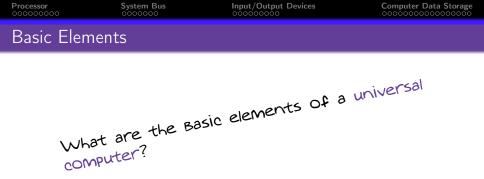
Why do we discuss this Topic?

Why do we discuss the functioning of the hardware in the operating systems course?

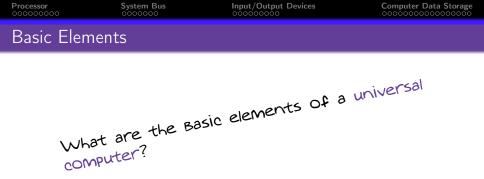


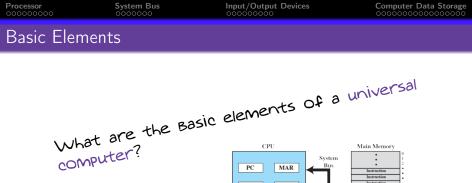

Why do we discuss the functioning of the hardware in the operating systems course?

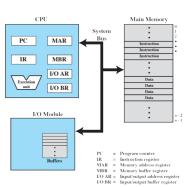
Edsger W. Dijkstra


"Computer Science is no more about computers than astronomy is about telescopes."

- Operating systems assist users and their processes in using the hardware
- Without an understanding of the functioning of the CPU, memory, storage, and bus systems, it is impossible to understand the functioning of operating systems




Processor/CPU


- Processor/CPU
- Memory

- Processor/CPU
- Memory
- Input/Output (I/O)

- Processor/CPU
- Memory
- Input/Output (I/O)
- System Bus

Source: Stallings, Operating systems 9e, (c) 2014 Prentice-Hall, Inc. All rights reserved.

Von Neumann Architecture

- Idea and structure of the general-purpose (universal) computer, which is not limited to a fixed program and has input and output devices
 - 1946: Developed by John von Neumann
 - Named after him is the Von Neumann architecture, or Von Neumann computer
 - Sometimes also referred to as Princeton architecture
 - In the Von Neumann computer...
 - data and programs are binary coded
 - data and programs are stored in the same memory
 - Essential concepts of the Von Neumann architecture were developed in 1936 by Konrad Zuse and implemented in 1937 in the Zuse Z1

System Bus

Input/Output Devices

- Character Devices and Block Devices
- Reading Data

Computer Data Storage

- Digital Data Storage
- Memory Hierarchy

System Bus

Input/Output Devices

- Character Devices and Block Devices
- Reading Data

Computer Data Storage

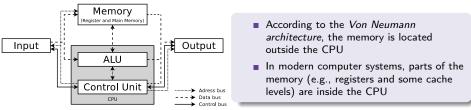
- Digital Data Storage
- Memory Hierarchy

System Bus

Input/Output Devices

Computer Data Storage

Computer Programs


What is a Computer Program?

Prof. Dr. Oliver Hahm – Operating Systems – Computer System Overview – WS 23/24

Input/Output Devices

Computer Data Storage

The Central Processing Unit (CPU)

- Most of the components of a computer are passive and controlled by the CPU
- Programs are sequences of machine instructions, which are stored in successive memory addresses
- During program execution, the CPU executes the machine instructions step by step
- A CPU consists of 2 components:
 - Arithmetic Logic Unit and Control Unit
- Input/Output devices (⇒ slide 26) and Memory (⇒ slide 36) are required, too

System Bus

nput/Output Devices

Computer Data Storage

Types of Processors

Microprocessor

Prof. Dr. Oliver Hahm - Operating Systems - Computer System Overview - WS 23/24

System Bus

Input/Output Devices

Computer Data Storage

Types of Processors

- Microprocessor
- Microcontroller (MCU) or System-on-a-Chip (SoC)
 - Integrates other components of the system

Source: Nbauers (Wikipedia), CC0 1.0

Input/Output Devices

Computer Data Storage

Types of Processors

Microprocessor

- Microcontroller (MCU) or System-on-a-Chip (SoC)
 - Integrates other components of the system

Source: Nbauers (Wikipedia), CC0 1.0

Graphical Processing Unit (GPU)

- Efficient computation on arrays of data (Single-Instruction Multiple Data (SIMD))
- Nowadays used for general numerical processing besides rendering only

Input/Output Devices

Computer Data Storage

Types of Processors

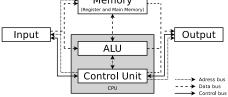
Microprocessor

- Microcontroller (MCU) or System-on-a-Chip (SoC)
 - Integrates other components of the system

Source: Nbauers (Wikipedia), CC0 1.0

Graphical Processing Unit (GPU)

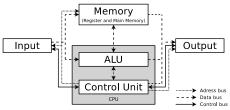
- Efficient computation on arrays of data (Single-Instruction Multiple Data (SIMD))
- Nowadays used for general numerical processing besides rendering only


Digital Signal Processor (DSP)

Source: en:User:Cburnett (Wikipedia), GFDL

 Processor
 System Bus
 Input/Output Devices
 Computer Data Storage

 Components of the CPU

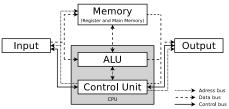

Control Unit

Interprets instructions, coordinates the other CPU components, controls the input/output devices and the control bus

Input/Output Devices

Computer Data Storage

Components of the CPU


Control Unit

Interprets instructions, coordinates the other CPU components, controls the input/output devices and the control bus

Arithmetic Logic Unit (ALU)

- Manipulates data and addresses
- Carries out the logical (NOT, AND, OR, XOR,...) and mathematical (ADD, SUB,...) operations

Components of the CPU

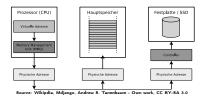
Control Unit

Interprets instructions, coordinates the other CPU components, controls the input/output devices and the control bus

Arithmetic Logic Unit (ALU)

- Manipulates data and addresses
- Carries out the logical (NOT, AND, OR, XOR,...) and mathematical (ADD, SUB,...) operations

Memory


- Registers for short-term storage of operands and addresses
- Cache and main memory = memory for programs and data

Processor 00000●000 System Bus

Input/Output Devices

Computer Data Storage

Additional Features and Implementation

Memory Management Unit (MMU)

Translate between logical and physical memory addresses (\rightarrow Virtual Memory)

Memory Protection Unit (MPU)

Protect sections of the memory against invalid access

Floating Point Unit (FPU)

Math coprocessor specially designed to operate on floating point numbers

Address Generation Unit (AGU)

Calculate memory addresses in parallel to improve the performance

Clock

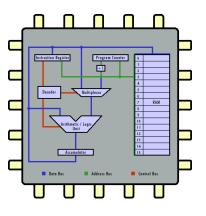
The frequency of a CPU is didcted by an external clock (oscillator)

Prof. Dr. Oliver Hahm – Operating Systems – Computer System Overview – WS 23/24

System Bus

Input/Output Devices

Computer Data Storage


What data is getting stored in the registers?

Input/Output Devices

Computer Data Storage

Registers

- Data inside registers can be accessed by the CPU immediately
- Registers operate with the same clock speed as the CPU itself

 Data registers (= accumulators) store operands for the ALU and their results,

- e.g., EAX, ECX, EDX, EBX (32 bit) RAX, RBX, RCX, RDX (64 bit)
- Address registers for memory addresses of operands and instructions
 - e.g., base register (= segment register) and index register (for the offset)
- Program counter (PC) (= instruction pointer) contains the memory address of the next instruction
- Instruction register (IR) stores the instruction, which is currently executed
- Stack pointer (SP) stores the memory address at the current end of the stack

Image source: http://courses.cs.vt.edu/~csonline/MachineArchitecture/Lessons/CPU/cpu_circuit.gif

Input/Output Devices

Computer Data Storage

Operating Systems and CPU Registers

Why does the OS need to know the registers of a CPU?

Agenda

Processor

System Bus

Input/Output Devices

- Character Devices and Block Devices
- Reading Data

Computer Data Storage

- Digital Data Storage
- Memory Hierarchy

Input/Output Devices

Computer Data Storage

What is the purposes of the various buses in a computer system?

Processor 000000000	System Bus oo●oooo	Input/Output Devices	Computer Data Storage
Data Bus			
(R	Memory		ata between CPU, y, and I/O devices

Output

- The number of lines specifies, how much data can be transmitted per clock cycle
- Usually, the number of lines is equal to the width of the registers of the ALU
- Number of lines with modern CPUs: 64

ALU

Control Unit 🛃

CPU

Input

Thus, the CPU can transfer 64 bits of data within a clock cycle from and to the main memory

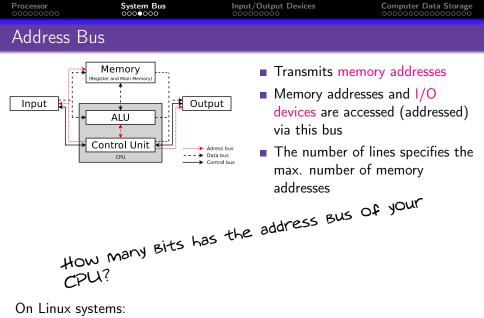
Number of Data Bus lines of some CPUs	
CPU 4004, 4040 8008, 8080, 8085, 8088 8086 (XT), 80286 (AT), 803865X 80386DX, 804865X/DX/DX2/DX4 Pentium J/MMX/II/III/IV/D/M, Celeron, Core Solo/Duo, Core 2 Duo, Core 2 Extreme, Pentium Pro, Pentium Dual-Core, Core 2 Quad, Core i7, Itanium, AMD Phenom-II, Itanium 2, AMD64	Data bus 4 Bits 8 Bits 16 Bits 32 Bits 64 Bits

Prof. Dr. Oliver Hahm – Operating Systems – Computer System Overview – WS 23/24

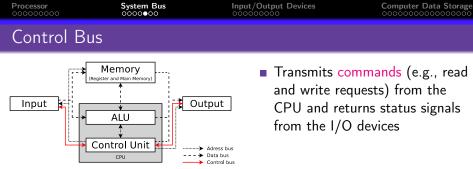
Processor 000000000	System Bus 000●000	Input/Output Devices	Computer Data Storage	
Address B	US			
<u>;</u> -≯	Memory (Register and Main Memory)	Transmits m	emory addresses	
		nutl	Memory addresses and I/O	

Control bus

- devices are accessed (addressed) via this bus
- The number of lines specifies the max. number of memory addresses


Number of Address Bus lines of some CPUs		
CPU	Address bus	max. addressable
4004, 4040	4 Bits	2 ⁴ = 16 Bytes
8008, 8080	8 Bits	2 ⁸ = 256 Bytes
8085	16 Bits	2 ¹⁶ = 65 kB
8088, 8086 (XT)	20 Bits	$2^{20} = 1 \text{ MB}$
80286 (AT)	24 Bits	$2^{24} = 16 \text{ MB}$
80386, 80486, Pentium I–IV/MMX/D/M, Celeron	32 Bits	$2^{32} = 4 \text{ GB}$
Core Solo/Duo, Core 2 Duo/Extreme/Quad,		
Pentium Pro, Pentium Dual-Core, Core i7	36 Bits	2 ³⁶ = 64 GB
Itanium	44 Bits	2 ⁴⁴ = 16 TB
AMD Phenom-II, Itanium 2, AMD64	48 Bits	2 ⁴⁸ = 256 TB

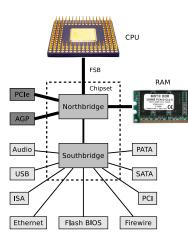
Prof. Dr. Oliver Hahm – Operating Systems – Computer System Overview – WS 23/24


ALU

🕨 Control Unit 🗧

CPU

grep 'address sizes' /proc/cpuinfo



- Difference between address bus and control bus:
 - Components of the computer are addressed via the address bus and instructed via the control bus what to do
- Important use of the control bus: interrupt requests (IRQs) from I/O devices to the CPU
- Typical number of lines: ≤ 10

System Bus 00000●0 Input/Output Devices

Computer Data Storage

Bus Systems in modern Computer Systems

- The chipset connects the CPU with the rest of the computer system
- The chipset consists of...
 - Northbridge
 - Located close to the CPU for rapid data transfer
 - Used for the connection of main memory and graphics card(s) with the CPU
 - Southbridge
 - Used for slower connections
- The bus between CPU and chipset is called Front Side Bus (FSB)
 - It contains the address bus, data bus and control bus

Some Bus Systems

 For performance and financial reasons, more and more parts of the chipset are relocated into the CPU

- In contrast to the Von Neumann architecture, I/O devices are not directly connected to the CPU (except for Microcontrollers (MCUs))
- Computer systems today contain various serial and parallel bus systems, which are designed for the particular requirements
- Point-to-point connections are used more and more often
- Controllers for I/O devices operate between the devices and the CPU
- Some bus systems:

	Internal computer busses	External computer busses
Parallel busses	PATA (IDE), PCI, ISA, SCSI	PCMCIA, SCSI
Serial busses	SATA, PCI-Express	Ethernet, FireWire, USB, eSATA

System Bus

Input/Output Devices

- Character Devices and Block Devices
- Reading Data

- Digital Data Storage
- Memory Hierarchy

System Bus

Input/Output Devices

Computer Data Storage

I/O Devices

What Groups Of Input/Output devices do exist?

System Bus

Input/Output Devices

Computer Data Storage

I/O Devices

What Groups Of Input/Output devices do How can processes interact with Input/Output devices?

System Bus

Input/Output Devices

Character Devices and Block Devices

Reading Data

- Digital Data Storage
- Memory Hierarchy

Character Devices and Block Devices

- Devices for computer systems are distinguished via their minimum transfer unit:
 - Character devices
 - On arrival/request of each single character, communication with the CPU always takes place
 - **Examples:** Mouse, keyboard, printer, terminal, or magnetic tape

Character Devices and Block Devices

- Devices for computer systems are distinguished via their minimum transfer unit:
 - Character devices
 - On arrival/request of each single character, communication with the CPU always takes place
 - **Examples:** Mouse, keyboard, printer, terminal, or magnetic tape
 - Block devices
 - Data transfer takes place only when an entire block (e.g., 1–4 kB) is present
 - **Examples:** HDD, SSD, optical drives

System Bus

Input/Output Devices

- Character Devices and Block Devices
- Reading Data

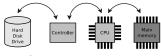
- Digital Data Storage
- Memory Hierarchy

- Example: If a record of an HDD must be read, these steps are carried out:
 - **1** The CPU receives from a process the **request to read** a record from a HDD
 - 2 The CPU sends via the driver an I/O command to the controller
 - 3 The controller **locates** the record on the HDD
 - 4 The process **receives** the requested record

- Example: If a record of an HDD must be read, these steps are carried out:
 - **1** The CPU receives from a process the **request to read** a record from a HDD
 - 2 The CPU sends via the driver an I/O command to the controller
 - 3 The controller **locates** the record on the HDD
 - 4 The process **receives** the requested record
- 3 concepts exist of how processes can read data into a computer:

- Example: If a record of an HDD must be read, these steps are carried out:
 - **1** The CPU receives from a process the **request to read** a record from a HDD
 - 2 The CPU sends via the driver an I/O command to the controller
 - 3 The controller **locates** the record on the HDD
 - 4 The process **receives** the requested record
- 3 concepts exist of how processes can read data into a computer:
 Busy Waiting
 - Busy Waiting

- Example: If a record of an HDD must be read, these steps are carried out:
 - **1** The CPU receives from a process the **request to read** a record from a HDD
 - 2 The CPU sends via the driver an I/O command to the controller
 - 3 The controller **locates** the record on the HDD
 - 4 The process **receives** the requested record
- 3 concepts exist of how processes can read data into a computer:
 - Busy Waiting
 - Interrupt-driven


- Example: If a record of an HDD must be read, these steps are carried out:
 - **1** The CPU receives from a process the **request to read** a record from a HDD
 - 2 The CPU sends via the driver an I/O command to the controller
 - 3 The controller **locates** the record on the HDD
 - 4 The process **receives** the requested record
- 3 concepts exist of how processes can read data into a computer:
 - Busy Waiting
 - Interrupt-driven
 - Direct Memory Access (DMA)

Input/Output Devices

Computer Data Storage

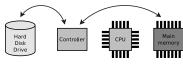
Busy Waiting

- The driver sends the request to the device and waits in an infinite loop until the controller indicates that the data is available
 - Once the data is available, it is written into the memory and the execution of the process continues
- **Example:** Programmed Input/Output (PIO)
 - The CPU accesses via read and write commands the memory areas of the devices and can copy this way data between the devices and the main memory
- Benefit:
 - No additional hardware required
 - Simple to program
- Drawback:
 - Causes CPU workload
 - Slows down simultaneous execution of multiple processes
 - Reason: The CPU must check periodically whether the data is available

Examples:

PATA HDDs in PIO mode,

legacy serial ports, legacy parallel ports,


PS/2 keyboard and mouse ports

- Precondition: An interrupt controller and a line of the control bus exist for the transmission of the interrupts
- The driver initializes the I/O operation and waits for an interrupt from the controller ⇒ the CPU sleeps
 - The CPU is not blocked while waiting for the interrupt and the operating system can assign the CPU to other processes
 - If an interrupt occurs, the driver is notified \implies gets the CPU assigned
- Benefits:
 - The CPU is not blocked
 - Allows the simultaneous execution of multiple processes
- Drawbacks:
 - Additional hardware (interrupt controller) is required
 - More complex to program

Direct Memory Access

Precondition: DMA controller

- Can transfer data directly between main memory and the I/O device
- Triggers an interrupt after the data is transferred

 Examples: Ultra-DMA (UDMA) for HDD/SSD, sound card, network adapter, TV/DVB tuner card

Benefits:

- Reading data causes no CPU workload
- Simultaneous execution of multiple processes is not slowed down
- Drawbacks:
 - Additional hardware (DMA controller) is required
 - Integrated in the chipset since the late 1980s

Source: http://www.cpu-

world.com/Support/82/Intel-P8257.jpg

System Bus

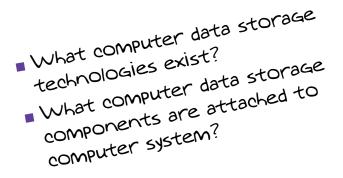
Input/Output Devices

- Character Devices and Block Devices
- Reading Data

- Digital Data Storage
- Memory Hierarchy

Input/Output Devices

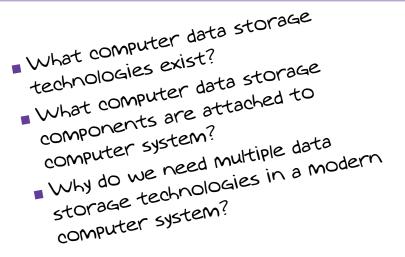
Computer Data Storage


Open Questions

What computer data storage technologies exist?

Input/Output Devices

Computer Data Storage


Open Questions

Input/Output Devices

Computer Data Storage

Open Questions

Data Storage

- Stores the data and the executables
- Different computer storage is connected via different bus systems ⇒ memory hierarchy (see slide 41)
- Reason for existence the memory hierarchy: price-performance ratio The better the performance of a computer data storage is, the higher is the acquisition cost and the smaller is the capacity

System Bus

Input/Output Devices

- Character Devices and Block Devices
- Reading Data

- Digital Data Storage
- Memory Hierarchy

Input/Output Devices

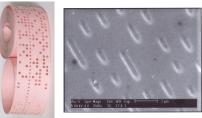
Computer Data Storage

Digital Data Storage

Storage	Write operation	Read operation	Access method	Movable parts	Persistent
Punched tape	mechanic		sequential	yes	yes
Punch card	mechanic		sequential	yes	yes
Magnetic tape	magnetic		sequential	yes	yes
Magnetic stripe card	magnetic		sequential	yes	yes
Cache and Registers (SRAM)	electric		random	no	no
Main memory (DRAM)	electric		random	no	no
Non-volatile RAM (NVRAM):					
FRAM, MRAM, PRAM Flash memory	electric		random	no	yes
(USB drive, SSD, CF/SD card)	electric		random	no	yes
Compact cassette (Datasette)	magnetic		sequential	yes	yes
Floppy disk	magnetic		sequential	yes	yes
Hard disk drive	magnetic		sequential	yes	yes
CD-ROM/DVD-ROM	mechanic	optical	sequential	yes	yes
CD-R/CD-RW/DVD-R/DVD-RW	optical		sequential	yes	yes
MiniDisc	magneto-optical	optical	sequential	yes	yes

(gray background color means outdated/obsolete technology)

- Random access means that arbitrary memory addresses can be accessed in a fix time (the medium does not need to be searched sequentially from the beginning)
 - The heads of magnetic disks or a laser can jump to every point of the medium within a known maximum period


Input/Output Devices

Computer Data Storage

Mechanical Data Storage

Image source (punch card): own work

- Each punch card usually represents a single line of text with 80 characters or a corresponding number of binary data
- The punched tape in the image has 8 holes for data and narrower holes to feed the tape
 - 1 bytes per row can be stored
- Data is represented on CDs/DVDs by pits and lands, which are applied to a plastic material
 - The mass-production of CDs/DVDs is called *pressing* and is carried out by injection molding with a negative (*stamper*)

Image source (punched tape): TedColes. Wikimedia (CC0)

Image source (pressed CD with pits und lands): Stefan Kolb. Wikimedia (CC0)

00 000000

Magnetic Data Storage

Processor

Data is stored on a magnetizable material

System Bus

Via read-and-write heads, the magnetization of the material is detected and modified

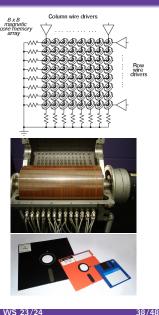

Input/Output Devices

Image source: http://sub.allaboutcircuits.com/images/04212.png

- Exception: Magnetic-core memory
- Read-and-write heads may be movable (e.g., on HDDs) or fixed (e.g., on magnetic tapes)
- Rotating data storage:
 - Hard disk drive, floppy disk, drum memory...
- Non-rotating data storage:
 - Magnetic-core memory, magnetic tape, magnetic stripe card, Datasette, bubble memory...

Image source (Drum memory): Gregg Tavares (CC-BY-2.0)

Image source (Floppy disks): George Chernilevsky (CC0)

Electric Data Storage

- Volatile memory Random-Access Memory (RAM)
 - Static Random-Access Memory (SRAM)
 - Information is stored as a change of state of *flip-flop* circuits
 - Information can be stored as long as the operating voltage is available
 - Faster and more expensive than DRAM
 - Used for cache and CPU-internal registers
 - Dynamic Random-Access Memory (DRAM)
 - Information is stored in capacitors
 - Requires periodic refreshing of the information
 - Stored data gets lost if the operating voltage is permanently missing or if the refresh was carried out too late because of leakage currents
 - Used for main memory

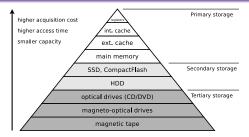
Non-volatile memory

- Read-Only Memory (ROM)
 - e.g., Electrically Erasable Programmable ROM (EEPROM)
- Flash memory

System Bus

Input/Output Devices

- Character Devices and Block Devices
- Reading Data


- Digital Data Storage
- Memory Hierarchy

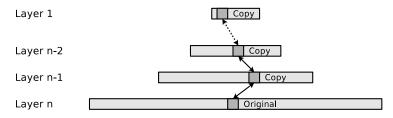
Input/Output Devices

Computer Data Storage

Memory Hierarchy

- Primary storage and secondary storage are permanently connected to the computer
 - Advantage: Stored data can be accessed quickly

- Primary storage: The CPU has direct access to this storage
- Secondary storage: Storage, which is accessed via a controller
- Tertiary storage: Not permanently connected to the computer. Main purpose is archiving
- Tertiary storage can be:
 - Near-line storage: Is automatically and without human intervention connected to the system (e.g., tape library)
 - Off-line storage: Media are stored in cabinets or storage rooms and must be connected manually to the system
 - Removable HDDs are in a strict sense also off-line storage


Functioning of the Memory Hierarchy

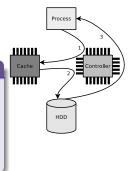
System Bus

Processor

When a record is accessed for the first time, a copy is created and this copy travels along the memory hierarchy to the top layer

Input/Output Devices

- If the record is modified, the modification must be passed down (written back) at some point in time
 - During write back, the copies of the record must be updated at all layers in order to avoid inconsistencies
 - Modifications cannot be passed directly to the lowest layer (to the original)!


Computer Data Storage

Cache Write Policies: Write-through

- Modifications are immediately propagated to lower storage layers
 - Advantage: Consistency is ensured
 - Drawback: Lower performance

Write-through

Figure: A process wants to carry out a write operation. It writes (1) the data into the cache and sends the write operation to the controller. The controller commands (2) the writing of the data into the storage. If the data was written successfully, the controller reports (3) the successful writing of the data to the process

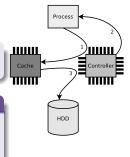
Write-back

Processor

Figure: A process wants to carry out a write operation. It writes (1) the data into the cache and sends the write instruction to the controller. The controller reports (2) immediately the successful writing of the data to the process. The writing (3) of the data into the storage is carried out asynchronous to the write instruction in the process

 Modifications are propagated when the corresponding page is removed from the cache

- Advantage: Better performance
- Drawback: Modifications get lost in case of a system failure


Input/Output Devices

For every page in the cache a dirty bit is stored inside the cache, which indicates whether the page has been modified or not

Cache Write Policies: Write-back

System Bus

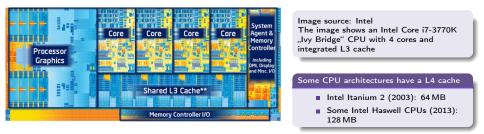
Computer Data Storage

44/48

First and Second Level Cache

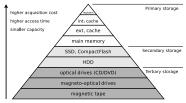
 Cache (buffer memory) stores copies of parts of the main memory to accelerate access to these data

- First Level Cache (L1 cache)
 - Integrated into the CPU
- Second Level Cache (L2 cache)
 - Slower and bigger in size
 - originally external to the CPU

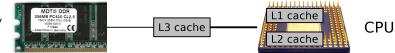

Image source:

Wikipedia (Konstantin Lanzet CC-BY-SA-3.0) The image shows an Intel Mobile Pentium II "Tongae" 233 MHz CPU with external 512 kB L2 cache. The L2 cache runs at half the clock frequency

Image source: http://www.amoretro.de/2012/03/ si5pi-aio-rev-1-1-socket-4-motherboard.html The image shows an Elitegroup SI5PI AIO with a Pentium 60. The mainboard has 16 memory module sockets for L2 cache


Third Level Cache

- Since 1999/2000 the CPU vendors increasingly integrating the L2 cache into the CPUs
 - For this reason, a Third Level Cache (L3 cache) as CPU-external cache was established
- In modern CPUs (e.g., Intel Core i-series and AMD Phenom II) the L3 cache is integrated into the CPU too
 - In multi-core CPUs with integrated L3 cache, the cores share the L3 cache, while each core has its own L1 cache and L2 cache


Main Memory

- Typical cache level capacities:
 - L1 cache: 4 kB to 256 kB
 - L2 cache: 256 kB to 4 MB
 - L3 cache: 1 MB to 16 MB

- Main memory = Random Access Memory (RAM)
 - Capacity: A few hundred MB up to several GB
 - All requests from the CPU, which can not be answered by the cache are forwarded to the main memory

Main memory (RAM)

Input/Output Devices

Computer Data Storage

You should now be able to answer the following questions:

- What is a Von Neumann Architecture?
- Which are the central components of a CPU and which bus systems exist?
- Which strategies exist to access I/O devices?
- How can data be stored in a computer?
- What is the price-performance ratio?
- Which type of cache memory exist in modern computer systems and how is it used?

