
Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Operating Systems
Processes

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering

oliver.hahm@fb2.fra-uas.de

https://teaching.dahahm.de

November 14, 2023

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 1/52

https://teaching.dahahm.de

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

What is a process?

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 2/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Agenda

1 Process Management

2 Process State Models

3 Create and Erase Processes

4 Structure of a UNIX Process in Memory

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 3/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Agenda

1 Process Management

2 Process State Models

3 Create and Erase Processes

4 Structure of a UNIX Process in Memory

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 4/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process

Definition: Process

A process (lat. procedere = proceed, move forward) is an instance of a program

⇒ A program in execution

Dynamic objects which represent sequential activities in a computer system

While running every computer always run (at least) one process

Each process has assigned resources

A process can run in user or kernel mode

Source: Tanenbaum, Modern Operating Systems 4e, (c) 2014 Prentice-Hall, Inc. All rights reserved.

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 5/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process Resources

Which resources are associated

to a process?

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 6/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process Context

The resources associated with a process managed by the OS are called
the process context

The operating system manages three types of context information:

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 7/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process Context

The resources associated with a process managed by the OS are called
the process context

The operating system manages three types of context information:
User context

Content of the allocated address space (−→ virtual memory)

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 7/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process Context

The resources associated with a process managed by the OS are called
the process context

The operating system manages three types of context information:
User context

Content of the allocated address space (−→ virtual memory)

Hardware context (−→ slide 9)

CPU registers

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 7/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process Context

The resources associated with a process managed by the OS are called
the process context

The operating system manages three types of context information:
User context

Content of the allocated address space (−→ virtual memory)

Hardware context (−→ slide 9)

CPU registers

System context (−→ slide 10)

Information, which stores the operating system about a process

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 7/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process Context

The resources associated with a process managed by the OS are called
the process context

The operating system manages three types of context information:
User context

Content of the allocated address space (−→ virtual memory)

Hardware context (−→ slide 9)

CPU registers

System context (−→ slide 10)

Information, which stores the operating system about a process

Typically information about the hardware and system context are
stored in the process control block (PCB) (−→ slide 11)

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 7/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Recap: Registers

What is a register?

Which registers do you remem

ber?

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 8/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Hardware Context

Definition: Hardware Context

The hardware context describes the content of the CPU registers during
process execution.

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 9/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Hardware Context

Definition: Hardware Context

The hardware context describes the content of the CPU registers during
process execution.

The following registers may need to be backed up when switching to
another process (−→ context switch):

Program Counter (Instruction Pointer) – stores the memory address of
the next instruction to be executed
Stack pointer – stores the address at the current end of the stack
Base pointer – points to an address in the stack
Instruction register – stores the instruction, which is currently executed
Accumulator – stores operands for the ALU and their results
Page-table base Register – stores the address of the page table of the
running process
Page-table length register – stores the length of the page table of the
running process

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 9/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

System Context

Definition: System Context

The information the operating system stores about a process is called the
system context. Each process can be uniquely identified by a subset of this
information.

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 10/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

System Context

Definition: System Context

The information the operating system stores about a process is called the
system context. Each process can be uniquely identified by a subset of this
information.

Examples:

Record in the process table,
Identifier (→ Process ID (PID)),
−→ State,
Information about parent or child processes,
Priority,
Identifiers - access credentials to resources,
Quotas (allowed usage quantity of individual resources),
Runtime,
Opened files, or
Assigned devices.

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 10/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process Table and Process Control Blocks

Each process has its own process context, which is independent of the
contexts of other processes

For managing the processes, the
operating system implements the
process table

It is a list of all existing
processes.
It contains for each process a
record which is called process
control block (PCB)

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 11/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Context Switching

In order to switch from one
process to another, the OS
stores the context (−→
CPU register content) of the
former one in the process
control block

⇒ The context of the latter
one is restored from the
content of its process
control block

Each process is at any moment in a particular state
−→ Process state models

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 12/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Agenda

1 Process Management

2 Process State Models

3 Create and Erase Processes

4 Structure of a UNIX Process in Memory

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 13/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process States

The number of different states depends on the process state model of
the operating system used

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 14/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process States

The number of different states depends on the process state model of
the operating system used

How many process states must

a process model contain
at

least?

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 14/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process State Model with 2 States

In principle two process states are enough:

running: The CPU is allocated to a process
idle: The processes waits for the allocation of CPU

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 15/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process State Model with 2 States (Implementation)

Processes in state idle are stored in a queue (→ the runqueue), in
which they wait for execution

The list can be sorted according to the process priority or waiting time

This model also shows the working method of the dispatcher

The job of the dispatcher is to carry out the state transitions

The execution order of the processes is specified by the scheduler,
which uses a scheduling algorithm

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 16/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process Priorities

The priority of a process is proportional to its CPU time

The process priority is typically expressed as an integer value

→ A lower value represents a higher priority

For Linux systems:

Priorities between -20 and +19 are available
⇒ -20 is the highest priority and +19 is the lowest priority.

The default priority is 0
Normal users can assign priorities from 0 to 19

The super user (root) can assign negative values too

For RIOT systems:

Priorities between 0 and 15 are available
⇒ 0 is the highest priority and 15 is the lowest priority.

The default priority is 7
Priorities are typically fixed at process creation

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 17/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Two States do not suffice in Practice

The process state model with 2 states assumes that all processes are
ready to run at any time

This is unrealistic!

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 18/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Two States do not suffice in Practice

The process state model with 2 states assumes that all processes are
ready to run at any time

This is unrealistic!

In almost any system processes become blocked at some point
Possible reasons:

They wait for an I/O device
They wait for the result of another process
They wait for a user input

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 18/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Two States do not suffice in Practice

The process state model with 2 states assumes that all processes are
ready to run at any time

This is unrealistic!

In almost any system processes become blocked at some point
Possible reasons:

They wait for an I/O device
They wait for the result of another process
They wait for a user input

Solution: Split the idle state into two:

ready state
blocked state

=⇒ Process state model with 3 states

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 18/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process State Model with 3 States

Each process is in one of the
following states:

running:

The CPU is assigned to the
process and executes its
instructions

ready:

The process is ready to run and is currently waiting for the allocation of
the CPU
This state is sometimes also called pending

blocked:

The process can currently not be executed and is waiting for the
occurrence of an event or the satisfaction of a condition
This may be e.g., a message of another process or of an I/O device or
the occurrence of a synchronization event

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 19/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process State Model with 3 States – Implementation

In practice, operating systems (e.g., Linux or RIOT) implement
multiple queues for processes blocked state

State transition: When a process state is changed, the corresponding
entry is removed from one queue and inserted into another one

No separate list exists for processes in running state
Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 20/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process State Model with 5 States

For many implementations the introduction of two additional states is
useful:

new: The process (process control block) has been created by the OS
but not yet in ready state
exit: The execution of the process has finished or was terminated but
the process control block still exists

Reason for the existence of the
process states new and exit:

The number of executable
processes may be limited in
order to save memory and to
specify the degree of
multitasking

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 21/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process State Model with 6 States

The sum of all processes may exceed the amount of physical main
memory ⇒ memory belonging to currently not running processes is
swapped out =⇒ swapping

The OS outsources processes which are in blocked state

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 22/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process State Model with 7 States

For more efficient use of available memory or in order to reduce waiting
time, processes in suspended state may be distinguished into

blocked suspended state
ready suspended state

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 23/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process State Model of Linux/UNIX (somewhat simplified)

The state running is split into the states. . .
user running for user mode processes
kernel running for kernel mode processes

A zombie process has completed execution (via the system call exit) but its entry in the process table exists until the
parent process has fetched (via the system call wait) the exit status (return code)

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 24/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Agenda

1 Process Management

2 Process State Models

3 Create and Erase Processes

4 Structure of a UNIX Process in Memory

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 25/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Writing Portable Code

What does one need to do in

order to implement an applica

tion that can be run on a vari

ety of computers?

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 26/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

POSIX

POSIX (Portable Operating System Interface) is a family of IEEE
standards for operating systems

Aims for portability and compatibility of applications between different
operating systems

Defines user and system level APIs (application programming
interfaces)

Additionally it defines command line shells and utility interfaces

It is based on UNIX

There are few POSIX-certified OS (e.g., macOS, VxWorks, or AIX)

Many OS (like Linux, FreeBSD, or Minix) are mostly POSIX compliant

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 27/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

What do you already know?

Let’s go to the survey again:
https://pingo.coactum.de/977183

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 28/52

https://pingo.coactum.de/977183

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

What do you already know?

Let’s go to the survey again:
https://pingo.coactum.de/977183

Which cache
write policy

yields the best

performance?

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 28/52

https://pingo.coactum.de/977183

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

What do you already know?

Let’s go to the survey again:
https://pingo.coactum.de/977183

Which cache
write policy

yields the best

performance?

Which types of context

information does the OS

store per process?

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 28/52

https://pingo.coactum.de/977183

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

What do you already know?

Let’s go to the survey again:
https://pingo.coactum.de/977183

Which cache
write policy

yields the best

performance?

Which types of context

information does the OS

store per process?

To which states are

there valid transitions

from the ready state
in a

Linux system?

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 28/52

https://pingo.coactum.de/977183

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

POSIX Process Creation via fork

In a POSIX system the system call fork() is the only way to create a
new process

If a process calls fork(), an identical copy is started as a new process

The calling process is called parent process
The new process is called child process

Child process and parent process both have their own process context,
but . . .

all assigned resources (like opened files and memory areas) of the
parent process are copied for the child process and are independent
from the parent process

The child process after creation runs the exactly same code

Since the program counters are identical as well both processes refer to
the same line of code

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 29/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Code example for fork on Linux

If a process calls fork(), an exact copy is created

The processes differ only in the return values of fork()

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <stdlib.h>

4 void main(void) {

5 int return_value = fork();

6 if (return_value < 0) {

7 // If fork() returns -1, an error happened.

8 // Memory or processes table have no more free capacity.

9 ...

10 }

11 if (return_value > 0) {

12 // If fork() returns a positive number , we are in the parent process.

13 // The return value is the PID of the newly created child process.

14 ...

15 }

16 if (return_value == 0) {

17 // If fork() returns 0, we are in the child process.

18 ...

19 }

20 }

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 30/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process Hierarchy of a POSIX System

All processes on a POSIX system are spawned via fork()

⇒ All processes are part of the same hierarchy

But which process forms the

root of this hierarchy
?

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 31/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process Hierarchy of a POSIX System

All processes on a POSIX system are spawned via fork()

⇒ All processes are part of the same hierarchy

But which process forms the

root of this hierarchy
?

init or systemd (PID 1) is the first process in Linux/UNIX

All running processes originate from init → init (or systemd) = parent of
all processes

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 31/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process Tree

Processes in a system form a tree of processes (−→ process hierarchy)
based on the parent-child relationship

The commands pstree and ps f return an overview about the processes, running in
Linux/UNIX, as a tree according to their parent/child relationships

$ ps fax

1 ? Ss 0:01 /usr/lib/systemd/systemd --switched -root --system

...

1211 ? Ss 0:00 dhcpcd: [manager] [ip4] [ip6]

1214 ? S 0:00 _ dhcpcd: [privileged proxy]

7775 ? S 0:00 | _ dhcpcd: [BPF ARP] enp0s31f6 10.2.0.190

7778 ? S 0:00 | _ dhcpcd: [BPF ARP] wlan0 10.51.134.219

1215 ? S 0:00 _ dhcpcd: [network proxy]

1216 ? S 0:00 _ dhcpcd: [control proxy]

1339 ? Ss 0:00 /usr/lib/systemd/systemd --user

1340 ? S 0:00 _ (sd-pam)

1465 ? Ss 0:00 _ /usr/bin/dbus -daemon --session --nofork

1511 ? Ssl 0:00 _ /usr/lib/at-spi -bus -launcher

1519 ? S 0:00 | _ /usr/bin/dbus -daemon --address=unix:path=/run/user /1000/

at -spi/bus

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 32/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Information about processes in Linux/UNIX

$ ps -eFw

UID PID PPID C SZ RSS PSR STIME TTY TIME CMD

root 1 0 0 5456 12860 2 12:06 ? 00:00:01 /usr/lib/systemd/systemd

root 1311 1 0 1998 4992 4 12:06 ? 00:00:00 login -- oleg

oleg 1339 1 0 5110 11828 4 12:07 ? 00:00:00 /usr/lib/systemd/systemd --user

oleg 1347 1311 0 1122763 171300 0 12:07 tty1 00:00:51 sway

oleg 8031 1 0 285131 31908 3 13:16 ? 00:00:02 foot

oleg 8033 8031 0 4948 15160 7 13:16 pts/2 00:00:02 /usr/bin/zsh

oleg 14043 1 3 949647 569960 4 13:26 ? 00:01:33 /usr/lib/firefox/firefox

oleg 14077 1 0 261432 165640 2 13:26 tty1 00:00:06 Xwayland :0 -rootless -core

oleg 22367 1 0 285340 35712 3 13:54 ? 00:00:01 foot

oleg 22369 22367 0 3710 9548 2 13:54 pts/1 00:00:00 /usr/bin/zsh

root 25003 2 0 0 0 6 14:05 ? 00:00:00 [kworker /6:2- events]

root 25097 2 0 0 0 0 14:05 ? 00:00:00 [kworker /0:2-i915 -unordered]

oleg 25202 22369 0 3187 4564 3 14:05 pts/1 00:00:00 ps -eFw

C (CPU) = CPU utilization of the process in percent

SZ (Size) = virtual process size = Text segment, heap and stack (see → slide 63)

RSS (Resident Set Size) = Occupied physical memory (without swap) in kB

PSR = CPU core assigned to the process

STIME = start time of the process

TTY (Teletypewriter) = control terminal.
Usually a virtual device: pts (pseudo terminal slave)

TIME = consumed CPU time of the process (HH:MM:SS)

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 33/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Independent of Parent and Child Processes

The example demonstrates that parent and child processes operate
independently of each other and have different memory areas

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <stdlib.h>

4 int main(void) {

5 int i;

6 if (fork())

7 // Parent process source code

8 for (i = 0; i < 5000000; i++)

9 printf("\n Parent: \%i", i);

10 else

11 // Child process source code

12 for (i = 0; i < 5000000; i++)

13 printf("\n Child : \%i", i);

14 return 0;

15 }

Child : 0

Child : 1

...

Child : 21019

Parent: 0

...

Parent: 50148

Child : 21020

...

Child : 129645

Parent: 50149

...

Parent: 855006

Child : 129646

...

The output demonstrates the switches between the processes

The value of the loop variable i proves that parent and child processes
are independent of each other

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 34/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Independent of Parent and Child Processes

The example demonstrates that parent and child processes operate
independently of each other and have different memory areas

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <stdlib.h>

4 int main(void) {

5 int i;

6 if (fork())

7 // Parent process source code

8 for (i = 0; i < 5000000; i++)

9 printf("\n Parent: \%i", i);

10 else

11 // Child process source code

12 for (i = 0; i < 5000000; i++)

13 printf("\n Child : \%i", i);

14 return 0;

15 }

Child : 0

Child : 1

...

Child : 21019

Parent: 0

...

Parent: 50148

Child : 21020

...

Child : 129645

Parent: 50149

...

Parent: 855006

Child : 129646

...

The output demonstrates the switches between the processes

The value of the loop variable i proves that parent and child processes
are independent of each other

The result of execution can not be reproduced

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 34/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

The PID Numbers of Parent and Child Process (1/2)

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <stdlib.h>

4 void main(void) {

5 int pid_of_child;

6 pid_of_child = fork();

7 // An error occured --> program abort

8 if (pid_of_child < 0) {

9 perror("\n fork() caused an error!");

10 exit (1);

11 }

12 // Parent process

13 if (pid_of_child > 0) {

14 printf("\n Parent: PID: %i", getpid ());

15 printf("\n Parent: PPID: %i", getppid ());

16 }

17 // Child process

18 if (pid_of_child == 0) {

19 printf("\n Child: PID: %i", getpid ());

20 printf("\n Child: PPID: %i", getppid ());

21 }

22 }

This example creates
a child process

Child process and
parent process both
print:

Own PID
PID of parent
process (PPID)

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 35/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

The PID Numbers of Parent and Child Process (2/2)

The output is usually similar to this one:

Parent: PID: 20835

Parent: PPID: 3904

Child: PID: 20836

Child: PPID: 20835

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 36/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

The PID Numbers of Parent and Child Process (2/2)

The output is usually similar to this one:

Parent: PID: 20835

Parent: PPID: 3904

Child: PID: 20836

Child: PPID: 20835

This result can be observed sometimes:

Parent: PID: 20837

Parent: PPID: 3904

Child: PID: 20838

Child: PPID: 1

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 36/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

The PID Numbers of Parent and Child Process (2/2)

The output is usually similar to this one:

Parent: PID: 20835

Parent: PPID: 3904

Child: PID: 20836

Child: PPID: 20835

This result can be observed sometimes:

Parent: PID: 20837

Parent: PPID: 3904

Child: PID: 20838

Child: PPID: 1

The parent process was terminated before the child process

If a parent process terminates before the child process, it gets init as
the new parent process assigned
Orphaned processes are always adopted by init

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 36/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Replacing Processes via exec

The system call exec() replaces a process with another one

The new process gets the PID of the calling process

⇒ To start a new process, one need to . . .

call fork(), and then
call exec()

If no new process is created with fork() before exec() is called, the parent process is
replaced

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 37/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Replacing Processes via exec

The system call exec() replaces a process with another one

The new process gets the PID of the calling process

⇒ To start a new process, one need to . . .

call fork(), and then
call exec()

If no new process is created with fork() before exec() is called, the parent process is
replaced

Steps of a program execution from a shell:

The shell creates with fork() an identical copy of itself
In the new process, the actual program is stared with exec()

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 37/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

exec Example

$ ps -f

UID PID PPID C STIME TTY TIME CMD

user 1772 1727 0 May18 pts/2 00:00:00 bash

user 12750 1772 0 11:26 pts/2 00:00:00 ps -f

$ bash

$ ps -f

UID PID PPID C STIME TTY TIME CMD

user 1772 1727 0 May18 pts/2 00:00:00 bash

user 12751 1772 12 11:26 pts/2 00:00:00 bash

user 12769 12751 0 11:26 pts/2 00:00:00 ps -f

$ exec ps -f

UID PID PPID C STIME TTY TIME CMD

user 1772 1727 0 May18 pts/2 00:00:00 bash

user 12751 1772 4 11:26 pts/2 00:00:00 ps -f

$ ps -f

UID PID PPID C STIME TTY TIME CMD

user 1772 1727 0 May18 pts/2 00:00:00 bash

user 12770 1772 0 11:27 pts/2 00:00:00 ps -f

Because of the exec, the ps -f command replaced the bash and got
its PID (12751) and PPID (1772)

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 38/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Another exec Example

1 #include <stdio.h>

2 #include <unistd.h>

3 int main(void) {

4 int pid;

5 pid = fork();

6 // If PID!=0 --> Parent process

7 if (pid) {

8 printf("... Parent process ...\n");

9 printf("[Parent] Own PID: %d\n", getpid ());

10 printf("[Parent] PID of the child: %d\n", pid);

11 }

12 // If PID=0 --> Child process

13 else {

14 printf("... Child process ...\n");

15 printf("[Child] Own PID: %d\n", getpid ());

16 printf("[Child] PID of the parent: %d\n", getppid ());

17 // Current program is replaced by "date"

18 // "date" will be the process name in the process table

19 execl("/bin/date", "date", "-u", NULL);

20 }

21 printf("[%d]Program abort\n", getpid ());

22 return 0;

23 }

The system call
exec() does not
exist as wrapper
function

But multiple
variants of the
exec() function
exist

One of these
variants is
execl()

Helpful overview about the different variants of the exec() function

http://www.cs.uregina.ca/Links/class-info/330/Fork/fork.html

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 39/52

http://www.cs.uregina.ca/Links/class-info/330/Fork/fork.html

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Explanation of the exec Example

$./ exec_example

... Parent process ...

[Parent] Own PID: 25646

[Parent] PID of the child: 25647

[25646]Program abort

... Child process ...

[Child] Own PID: 25647

[Child] PID of the parent: 25646

Di 24. Mai 17:25:31 CEST 2016

$./ exec_example

... Parent process ...

[Parent] Own PID: 25660

[Parent] PID of the child: 25661

[25660]Program abort

... Child process ...

[Child] Own PID: 25661

[Child] PID of the parent: 1

Di 24. Mai 17:26:12 CEST 2016

After printing its PID via
getpid() and the PID of its
parent process via getppid(),
the child process is replaced via
date

If the parent process of a
process terminates before the
child process, the child process
gets init as new parent
process assigned

Since Linux Kernel 3.4 (2012) and Dragonfly BSD 4.2
(2015), it is also possible that other processes than
PID=1 become the new parent process of an orphaned
process
http://unix.stackexchange.com/questions/149319/

new-parent-process-when-the-parent-process-dies/

177361#177361

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 40/52

http://unix.stackexchange.com/questions/149319/new-parent-process-when-the-parent-process-dies/177361#177361
http://unix.stackexchange.com/questions/149319/new-parent-process-when-the-parent-process-dies/177361#177361
http://unix.stackexchange.com/questions/149319/new-parent-process-when-the-parent-process-dies/177361#177361

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

3 possible Ways to create a new Process

Process forking: A running process creates with fork() a new,
identical process

Process chaining: A running process creates with exec() a new
process and terminates itself this way because it gets replaced by the
new process

Process creation: A running process creates with fork() a new,
identical process, which replaces itself via exec() by a new process

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 41/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Have Fun with Fork Bombs

Python code

1 import os

2

3 while True:

4 os.fork()

C code

1 #include <unistd.h>

2

3 int main(void)

4 {

5 while (1)

6 fork();

7 }

PHP code

1 <?php

2 while(true)

3 pcntl_fork ();

4 ?>

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 42/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Have Fun with Fork Bombs

A fork bomb is a program, which calls the fork() system call in an
infinite loop

Objective: Create copies of the process until there is no more free
memory

The system becomes unusable

Python code

1 import os

2

3 while True:

4 os.fork()

C code

1 #include <unistd.h>

2

3 int main(void)

4 {

5 while (1)

6 fork();

7 }

PHP code

1 <?php

2 while(true)

3 pcntl_fork ();

4 ?>

Only protection option: Limit the maximum number of processes and
the maximum memory usage per user

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 42/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Agenda

1 Process Management

2 Process State Models

3 Create and Erase Processes

4 Structure of a UNIX Process in Memory

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 43/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Process’ Data

What types of data are being

accessed by a process?

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 44/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Memory Layout of a Unix Process

Default allocation of the virtual
memory on a Linux system with a
32-bit CPU

1 GB for the system (kernel)
3 GB for the running process

The structure of processes on 64 bit systems is not
different from 32 bit systems. Only the address
space is larger and thus the possible extension of
the processes in the memory. Sources

UNIX-Systemprogrammierung, Helmut Herold,
Addison-Wesley (1996), P.345-347
Betriebssysteme, Carsten Vogt, Spektrum
(2001), P.58-60
Moderne Betriebssysteme, Andrew S.

Tanenbaum, Pearson (2009), P.874-877

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 45/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Text Segment

The text segment contains the program
code (machine instructions) and other
read-only data (e.g., strings literals)

Can be shared by multiple processes

Must be stored for this reason only
once in physical memory
Is therefore usually read-only

exec() reads the text segment from
the program file

Sources

UNIX-Systemprogrammierung, Helmut Herold,
Addison-Wesley (1996), P.345-347
Betriebssysteme, Carsten Vogt, Spektrum
(2001), P.58-60
Moderne Betriebssysteme, Andrew S.

Tanenbaum, Pearson (2009), P.874-877

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 46/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Heap: Data and BSS

The heap grows dynamically and
consists of 2 parts:

1 data segment
2 BSS

The data segment contains initialized
variables and constants

Contains all data assigned to
initialized global variables

Example: int sum = 0;

exec() reads the data segment from
the program file

The user space in the memory structure of the processes is the user
context (see slide 7). It is the virtual address space (virtual
memory) allocated by the operating system

Sources

UNIX-Systemprogrammierung, Helmut Herold,
Addison-Wesley (1996), P.345-347
Betriebssysteme, Carsten Vogt, Spektrum
(2001), P.58-60
Moderne Betriebssysteme, Andrew S.

Tanenbaum, Pearson (2009), P.874-877

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 47/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

BSS

The area BSS (block started by

symbol) contains uninitialized variables

Contains uninitialized global variables

Example: int i;

Moreover, the process can dynamically
allocate memory in this area at runtime

In C with the function malloc()

The operating system loader typically
initializes all variables in the BSS with
0 on start Sources

UNIX-Systemprogrammierung, Helmut Herold,
Addison-Wesley (1996), P.345-347
Betriebssysteme, Carsten Vogt, Spektrum
(2001), P.58-60
Moderne Betriebssysteme, Andrew S.

Tanenbaum, Pearson (2009), P.874-877

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 48/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

BSS

The area BSS (block started by

symbol) contains uninitialized variables

Contains uninitialized global variables

Example: int i;

Moreover, the process can dynamically
allocate memory in this area at runtime

In C with the function malloc()

The operating system loader typically
initializes all variables in the BSS with
0 on start

Why not simply initialize variab
les

with zero in data?

Sources

UNIX-Systemprogrammierung, Helmut Herold,
Addison-Wesley (1996), P.345-347
Betriebssysteme, Carsten Vogt, Spektrum
(2001), P.58-60
Moderne Betriebssysteme, Andrew S.

Tanenbaum, Pearson (2009), P.874-877

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 48/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Stack (1/2)

The stack is used to implement nested
function calls

It also contains command line
arguments of the program call and
environment variables

Operates according to the LIFO
(Last In First Out) principle

Sources

UNIX-Systemprogrammierung, Helmut Herold,
Addison-Wesley (1996), P.345-347
Betriebssysteme, Carsten Vogt, Spektrum
(2001), P.58-60
Moderne Betriebssysteme, Andrew S.

Tanenbaum, Pearson (2009), P.874-877

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 49/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Stack (2/2)

With every function call a data
structure with the following contents is
placed onto the stack:

Call parameters
Return address
Pointer to the calling function in the
stack

The functions also add (push) their
local variables onto the stack

When returning from from a function
the data structure of the function is
removed (pop) from the stack

Sources

UNIX-Systemprogrammierung, Helmut Herold,
Addison-Wesley (1996), P.345-347
Betriebssysteme, Carsten Vogt, Spektrum
(2001), P.58-60
Moderne Betriebssysteme, Andrew S.

Tanenbaum, Pearson (2009), P.874-877

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 50/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

Assessing the Memory Consumption of a Program

The command size returns the size
(in bytes) of the text segment, data
segment, and BSS of program files

The contents of the text segment
and data segment are included in the
program files
All contents in the BSS are set to
value 0 at process creation

$ size /bin/c*

text data bss dec hex filename

46480 620 1480 48580 bdc4 /bin/cat

7619 420 32 8071 1f87 /bin/chacl

55211 592 464 56267 dbcb /bin/chgrp

51614 568 464 52646 cda6 /bin/chmod

57349 600 464 58413 e42d /bin/chown

120319 868 2696 123883 1e3eb /bin/cp

131911 2672 1736 136319 2147f /bin/cpio

Sources

UNIX-Systemprogrammierung, Helmut Herold,
Addison-Wesley (1996), P.345-347
Betriebssysteme, Carsten Vogt, Spektrum
(2001), P.58-60
Moderne Betriebssysteme, Andrew S.

Tanenbaum, Pearson (2009), P.874-877

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 51/52

Process Management Process State Models Create and Erase Processes Structure of a UNIX Process in Memory

You should now be able to answer the following
questions:

What is a process?

Which information does the hardware and
the system context provide?

What happens when the OS switches from
one process to another?

Which states can a process have?

How can a new process be started?

How can a user mode process execute a
higher privileged task?

Prof. Dr. Oliver Hahm – Operating Systems – Processes – WS 23/24 52/52

	Process Management
	Process State Models
	Create and Erase Processes
	Structure of a UNIX Process in Memory

