
Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise Sheet 4

Exercise 1 (System Calls)

1. x86-CPUs contain 4 privilege levels ("rings") for processes. Mark in the dia-
gram (clearly visible!) the kernel mode and the user mode.

2. Which ring contains the kernel of the operating system?

3. Which ring contains the applications of the users?

4. Processes of which ring have full access to the hardware?

5. Name a reason for the differentiation between user mode and kernel mode.

Content: Topics of slide set 5 Page 1 of 12

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

6. What is a system call?

7. What is a context switch?

8. Name two reasons why user mode processes should not call system calls
directly.

9. What alternatives exist, if user mode processes should not call system calls
directly?

Exercise 2 (Processes)

1. Which three sorts of process context information stores the operating system?

2. Which process context information are not stored in the process control
block?

3. Why does the process control block not store all process context information?

4. List all information stored in the process control block of a RIOT process
(thread)? (Check at https://doc.riot-os.org))

Content: Topics of slide set 5 Page 2 of 12

https://doc.riot-os.org

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

5. What is the task of the dispatcher?

6. What is the task of the scheduler?

7. The process state model with 2 states is the smallest possible process model.
Enter the names of the states in the diagram of the process state model with
2 states.

8. Does the process state model with 2 states make sense? Explain your answer
shortly.

9. Enter the names of the states in the diagram of the process state model with
6 states.

Content: Topics of slide set 5 Page 3 of 12

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

10. What is the task of the process table?

11. How many status lists for processes in blocked state manages the operating
system?

12. Describe the effect of calling the system call fork().

13. Describe the effect of calling the system call exec().

14. The three diagrams below show all existing ways of creating a new process.
Specify for each diagram, which system call(s) are required to implement the
illustrated way of process creation.

Content: Topics of slide set 5 Page 4 of 12

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

15. A parent process (PID = 75) with the characteristics, described in the table
below, creates a child process (PID = 198) by using the system call fork().
Enter the four missing values into the table.

Parent Process Child Process
PPID 72
PID 75 198
UID 18
Return value of fork()

16. Describe what init is and what its task is.

17. Name the differences of a child process from the parent process shortly after
its creation.

18. Describe the effect, when a parent process is terminated before the child
process.

19. Describe what data the Text Segment contains.

20. Describe what data the Heap contains.

Content: Topics of slide set 5 Page 5 of 12

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

21. Describe what data the Stack contains.

Content: Topics of slide set 5 Page 6 of 12

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise 3 (Time-based Command Execution,
Control Structures, Archiving)

1. Program a shell script, which reads two numbers as command line arguments.
The script should check whether the numbers are identical, and print out the
result of the check.

1 #!/ bin/sh
2
3 a=${1}
4 b=${2}
5
6 if [${a} -eq ${b}]
7 then
8 echo " Numbers ${a} and ${b} are identical ."
9 else

10 echo " Numbers ${a} and ${b} are NOT identical ."
11 fi

2. Extend the shell script in a way that if the numbers are not identical, it is
checked, which one of the two numbers is the larger one. The result of the
check should be printed out.

1 #!/ bin/sh
2
3 a=${1}
4 b=${2}
5
6 if [${a} -eq ${b}]
7 then
8 echo " Numbers ${a} and ${b} are identical ."
9 else

10 if [${a} -gt ${b}]
11 then
12 echo "${a} is greater than ${b}."
13 else
14 echo "${b} is greater than ${a}."
15 fi
16 fi

3. Program a shell script, which creates a backup of a directory of your choice.
The script should create an archive file with the file extension .tar.bz2 from
the directory. The archive file should be stored in the directory /tmp. The
name of the archive file should correspond to the following naming scheme:

Backup_<USERNAME>_<YEAR>_<MONTH>_<DAY>.tar.bz2

The fields <USERNAME>, <YEAR>, <MONTH> and <DAY> should be replaced by the
current values.

1 #!/ bin/sh
2

Content: Topics of slide set 5 Page 7 of 12

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

3 DIR =/ tmp/ testdir
4 DATE=$(date +"%Y_%m_%d")
5
6 tar cvjf /tmp/ Backup_$ {USER}_${DATE }. tar.bz2 ${DIR}

4. Program a shell script, which checks if already today an archive file was created
according to the naming scheme of subtask 3. The result of the check should
be printed out in the shell.

1 #!/ bin/sh
2
3 DATE=$(date +"%Y_%m_%d")
4 FILENAME ="/tmp/ Backup_$ {USER}_${DATE }. tar.bz2"
5
6 if [-f ${ FILENAME }]
7 then
8 echo " Backup has been created today."
9 else

10 echo "No backup has been created today."
11 fi

5. Write two cron jobs. She first cron job should execute at 6:15 am on every
day (except on weekends) the shell script from subtask 3, which creates the
archive file with the backup. She second cron job should execute at 11:45
am on every day (except on weekends) the shell script from subtask 4, which
checks, whether already today an archive file was created. The output from
the shell scripts should be appended to a file /tmp/backup.log. If the archive
file Backup...tar.bz2 has been created successfully, this should be noted in
the log file /tmp/backup.log. Before each new entry in the file, lines according
to the following pattern (with current values) should be inserted into the log
file /tmp/backup.log.

20.11.2013 --- Time: 21:39:51

•

•

•

Content: Topics of slide set 5 Page 8 of 12

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

•

•

•

•

•

•

$ crontab -e # 1. Field: 15. minute of the hour
2. Field: 6. hour of the day
3. Field: On each day of the month
4. Field: In each month of the year
5. Field: On week days monday to friday
6. Field: Command
15 6 * * 1-5 echo -e "***********************\n`date
+%d.%m.%Y\ ---\ %X`" >> /tmp/Backup-Log.txt &&
/path/to/create_backup_script.sh >> /tmp/backup.log
1. Field: 45. minute of the day
2. Field: 11. hour of the day
3. Field: On each day of the month

Content: Topics of slide set 5 Page 9 of 12

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

4. Field: In each month of the year
5. Field: On week days monday to friday
6. Field: Command
45 11 * * 1-5 echo -e "***********************\n`date
+%d.%m.%Y\ ---\ %X`" >> /tmp/backup.log&&
/path/to/check_for_backup_script.sh >> /tmp/backup.log

Exercise 4 (Shell Scripts)

1. Program a shell script, which checks for a file, which is specified as an argu-
ment, whether it exists and if it is a file, a directory, a symbolic link, a socket
or a named pipe.

• The script should print out the result of the check.
1 #!/ bin/sh
2
3 FILE=${1}
4
5 if test -e ${FILE}
6 then
7 echo "${FILE} exists ."
8 if test -d ${FILE} ; then
9 echo "${FILE} is a directory ."

10 elif test -L ${FILE} ; then
11 echo "${FILE} is a symbolic link."
12 elif test -S ${FILE} ; then
13 echo "${FILE} is a socket ."
14 elif test -p ${FILE} ; then
15 echo "${FILE} is a named pipe (FIFO)."
16 fi
17 else
18 echo "${FILE} does not exist."
19 fi

2. Extend the shell script from subtask 1 in a way that if the file, which is specified
as an argument, exists, it is checked, if the file could be executed and if write
access would be possible.

1 #!/ bin/sh
2
3 FILE=${1}
4
5 if test -e ${FILE}
6 then
7 echo "${FILE} exists ."
8 if test -x ${FILE} ; then
9 echo "${FILE} is executable "

10 else
11 echo "${FILE} is not executable "
12 fi
13

Content: Topics of slide set 5 Page 10 of 12

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

14 if test -w ${FILE} ; then
15 echo "${FILE} is writable "
16 else
17 echo "${FILE} is not writable "
18 fi
19
20 if test -d ${FILE} ; then
21 echo "${FILE} is a directory ."
22 elif test -L ${FILE} ; then
23 echo "${FILE} is a symbolic link."
24 elif test -S ${FILE} ; then
25 echo "${FILE} is a socket ."
26 elif test -p ${FILE} ; then
27 echo "${FILE} is a named pipe (FIFO)."
28 fi
29 else
30 echo "${FILE} does not exist."
31 fi

3. Program a shell script, which reads so long text on the command line, until it
is terminated by typing END.

• The script should convert the text, which is read in from the command
line, to uppercase.

1 #!/ bin/sh
2
3 while true
4 do
5 read LINE
6 echo ${LINE} | tr a-z A-Z
7 if [${LINE} == "END"]
8 then
9 break

10 fi
11 done

4. Program a shell script, which prints out the number of running processes for
all logged in users.

1 #!/ bin/sh
2 for USER in $(who -s | cut -f1 -d" ")
3 do
4 echo ${USER }:
5 proccount =$(ps h -u ${USER} | wc -l)
6 echo "${ proccount } processes "
7 done

5. Extend the shell script from subtask 4 in a way that that the output is sorted.

• The user with most processes should stand at the beginning.
1 #!/ bin/sh
2
3 TEMP=$(mktemp)

Content: Topics of slide set 5 Page 11 of 12

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

4
5 for USER in $(who -s | cut -f1 -d" ")
6 do
7 proccount =$(ps h -u ${USER} | wc -l)
8 echo "${USER }: ${ proccount } processes " >> ${TEMP}
9 done

10
11 sort ${TEMP} | uniq
12 rm ${TEMP}

6. Program a shell script, which checks after start every 10 seconds, if a file
/tmp/lock.txt exists.

• Each time after the script has checked the existence of the file, it should
output an appropriate message on the shell.

• Once the file /tmp/lock.txt exists, the script should terminate itself.
1 #!/ bin/sh
2
3 LOCKFILE =/ tmp/lock.txt
4
5 RUNNING =true
6 while ${ RUNNING }
7 do
8 if [-f ${ LOCKFILE }]
9 then

10 echo "${ LOCKFILE } found , exiting ..."
11 RUNNING =false
12 else
13 echo "${ LOCKFILE } not found"
14 sleep 10
15 fi
16 done

Content: Topics of slide set 5 Page 12 of 12

	(System Calls)
	(Processes)
	(Time-based Command Execution, Control Structures, Archiving)
	(Shell Scripts)

