
Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise Sheet 6

Exercise 1 (Inter-Process Communication)

1. Describe what a critical section is.

2. Describe what a race condition is.

3. Describe how to avoid race conditions.

Exercise 2 (Communication of Processes)

1. What must be considered, when inter-process communication via shared
memory segments is used?

2. What is the function of the shared memory table in the Linux kernel?

Content: Topics of slide set 08 Page 1 of 11

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

3. What is the impact of a restart (reboot) of the operating system on the existing
shared memory segments?
(Only a single answer is correct!)
f The shared memory segments are created new during boot and the contents
are restored.
f The shared memory segments are created new during boot, but they remain
empty. This means, only the contents are lost.
f The shared memory segments and their contents are lost.
f Only the shared memory segments are lost. The operating system stores
the contents in temporary files inside the folder \tmp.

4. According to which principle operate message queues?
(Only a single answer is correct!)
f Round Robin f LIFO f FIFO f SJF f LJF

5. How many processes can communicate with each other via a pipe?

6. What is the effect, when a process tries to write data into a pipe without free
capacity?

7. What is the effect, when a process tries to read data from an empty pipe?

8. Which two different types of pipes exist?

9. Which two different types of sockets exist?

Content: Topics of slide set 08 Page 2 of 11

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

10. Communication via pipes works. . .
f memory-based
f object-based

f stream-based
f message-based

11. Communication via message queues works. . .
f memory-based
f object-based

f stream-based
f message-based

12. Communication via shared memory segments works. . .
f memory-based
f object-based

f stream-based
f message-based

13. Communication via sockets works. . .
f memory-based
f object-based

f stream-based
f message-based

14. Which types of inter-process communication operate bidirectional?
f Shared memory segments
f Anonymous pipes
f Sockets

f Message queues
f Named pipes

15. Name a sort of inter-process communication, which can only be used for pro-
cesses, which are closely related to each other.

f Shared memory segments
f Anonymous pipes
f Sockets

f Message queues
f Named pipes

16. Which sort of inter-process communication allows communication over com-
puter boundaries?

f Shared memory segments
f Anonymous pipes
f Sockets

f Message queues
f Named pipes

17. With which sorts of inter-process communication remains the data intact with-
out a bound process?

f Shared memory segments
f Anonymous pipes
f Sockets

f Message queues
f Named pipes

18. For which sort of inter-process communication guarantees the operating system
not the synchronization?

f Shared memory segments
f Anonymous pipes
f Sockets

f Message queues
f Named pipes

Content: Topics of slide set 08 Page 3 of 11

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise 3 (Synchronization)

1. What is the advantage of signal and wait compared with busy waiting?

2. Which two problems can arise from locking?

3. What is the difference between signaling and locking?

4. Which four conditions must be fulfilled at the same time as precondition that
a deadlock can arise?

f Recursive function calls
f Mutual exclusion
f Frequent function calls
f Nested for loops
f No preemption

f Hold and wait
f > 128 processes in blocked state
f Iterative programming
f Circular wait
f Queues

Content: Topics of slide set 08 Page 4 of 11

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

5. Does a deadlock occur? Perform the deadlock detection with matrices.

Existing resource vector =
(

8 6 7 5
)

Current allocation matrix =

 2 1 0 0
3 1 0 4
0 2 1 1

 Request matrix =

 3 2 4 5
1 1 2 0
4 3 5 4

=
(

3 2 6 0
)

=
(

6 3 6 4
)

=
(

6 5 7 5
)

Content: Topics of slide set 08 Page 5 of 11

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise 4 (Cooperation of Processes)

1. What is a semaphore and what is its intended purpose?

2. Which two operations are used with semaphores?

3. What is the difference between semaphores versus locks?

4. What is a binary semaphore?

5. What is a mutex and what is its intended purpose?

6. Which type of semaphores has the same functionality as the mutex?

7. Which states can a mutex have?

Content: Topics of slide set 08 Page 6 of 11

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

8. Which Linux/UNIX command returns information about existing shared
memory segments, message queues and semaphores?

9. Which Linux/UNIX command allows to erase existing shared memory
segments, message queues and semaphores?

Exercise 5 (Producer/Consumer Scenario)

A producer should send data to a consumer. A buffer with limited capacity should
be used to minimize the waiting times of the consumer. Data is placed into the
buffer by the producer and the consumer removes data from the buffer. Mutual
exclusion is necessary in order to avoid inconsistencies. If the buffer has no more
free capacity, the producer must block itself. If the buffer is empty, the consumer
must block itself.

For synchronizing the two processes, create the required semaphores, assign them
initial values and insert semaphore operations.

Content: Topics of slide set 08 Page 7 of 11

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

typede f i n t semaphore ; // semaphores are o f type i n t e g e r

1 semaphore filled = 0;
2 semaphore empty = 10;
3 semaphore mutex = 1;

void producer (void) {
i n t data ;

whi l e (TRUE) { // i n f i n i t e loop
createDatapacket (data) ; // c r e a t e data packet

1 P(empty);
2 P(mutex);

// wr i t e data packet in to the b u f f e r
inse r tDatapacket (data) ;

1 V(mutex);
2 V(filled);

}
}

void consumer (void) {
i n t data ;

whi l e (TRUE) { // i n f i n i t e loop

1 P(filled);
2 P(mutex);

// pick data packet from the b u f f e r
removeDatapacket (data) ;

1 V(mutex);
2 V(filled);

// consume data packet
consumeDatapacket (data) ;

}
}

Content: Topics of slide set 08 Page 8 of 11

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise 6 (Semaphores)

In a warehouse, packages are delivered constantly by a supplier and picked up by two
deliverers. The supplier and the deliverers need to pass through a gate. The gate can
always be passed only by a single person. The supplier brings three packages with
every shipment to the incoming goods section. One of the deliverers can pick two
packages with every pickup from the outgoing goods section. The other deliverer
can pick only a single package per pickup from the outgoing goods section.

Content: Topics of slide set 08 Page 9 of 11

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

sema gate = 1
sema outgoing = 1
sema empty = 10
sema occupied = 0

Exactly one process Supplier, one process Deliverer_X and one process
Deliverer_Y exist. For synchronizing the three processes, create the required
semaphores, assign them values and insert semaphore operations. These conditions
must be met:

• Only a single process can pass through the gate.
It is impossible that multiple processes pass though the gate simultaneously.

• Only one of both existing deliverers can access the outgoing goods section.
It is impossible that both deliverers access the outgoing goods section simulta-
neously.

• It should be possible that the supplier and one of the deliverers can simulta-
neously unload and pick goods.

• The capacity of the warehouse is 10 packages.

• No deadlocks are allowed.

• At the beginning, the warehouse contains no packets and the gate, as well as
the incoming goods section and the outgoing goods section are free.

Source: TU-München, Übungen zur Einführung in die Informatik III, WS01/02

Content: Topics of slide set 08 Page 10 of 11

Prof. Dr. Oliver Hahm
Operating Systems (WS 23/24)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Supplier
{

while (TRUE)
{

P(gate);

<Pass through gate>;

V(gate);

<Enter incoming
goods section>;

P(empty);
P(empty);
P(empty);

<Unload 3 packets>;

V(filled);
V(filled);
V(filled);

<Leave incoming
goods section>;

P(gate);

<Pass through gate>;

V(gate);

}
}

Deliverer_X
{

while (TRUE)
{

P(gate);

<Pass through gate>;

V(gate);

P(outgoing);

<Enter outgoing
goods section>;

P(occupied);
P(occupied);

<Pick 2 packets>;

V(empty);
V(empty);

<Leave outgoing
goods section>;

V(outgoing);

P(gate);

<Pass through gate>;

V(gate);

}
}

Deliverer_Y
{

while (TRUE)
{

P(gate);

<Pass through gate>;

V(gate);

P(outgoing);

<Enter outgoing
goods section>;

P(occupied);

<Pick 1 packet>;

V(empty);

<Leave outgoing
goods section>;

V(outgoing);

P(gate);

<Pass through gate>;

V(gate);

}
}

Content: Topics of slide set 08 Page 11 of 11

	(Inter-Process Communication)
	(Communication of Processes)
	(Synchronization)
	(Cooperation of Processes)
	(Producer/Consumer Scenario)
	(Semaphores)

