Exercise Sheet 7

Exercise 1 (Memory Management)

1.	With which men ☐ Static partition ☐ Dynamic par ☐ Buddy memore	oning titioning	nt methods do	internal fragmentation occur?
2.	With which men ☐ Static partition ☐ Dynamic par ☐ Buddy memore	oning titioning	nt methods do	external fragmentation occur?
3.	How can extern	al fragmentation	be fixed?	
4.	Which memory ☐ First Fit	management me ☐ Next Fit	thod searches for Best fit	or the block, which fits best?
5.		management conf the address spa ☐ Next Fit		for a free block, starting from \square Random
6.	*	management corl of the address s		quickly the large area of free \Box Random
7.	Which memory block?		ncept selects ra	andom a free and appropriate
	\square First Fit	\square Next Fit	\square Best fit	Random
8.	Which memory the latest alloca	~	ncept searches i	for a free block, starting from
	☐ First Fit	□ Next Fit	\square Best fit	\square Random
9.	Which memory slow?	management co	ncept produces	many mini-fragments and is
	\square First Fit	\square Next Fit	\square Best fit	\square Random

Content: Topics of slide set 07 Page 1 of 9

Exercise 2 (Buddy Memory Allocation)

The Buddy method for allocating memory to processes shall be used for a memory with a capacity of $1024\,\mathrm{kB}$. Perform the provided operations and give the occupancy state of the memory after each operation.

0 128 256 384 512 640 768 896 1024

	Ü	120	230	501	312	0.10	, 00	050	102
tial state					1024 KB				
KB request => A									
KB request => B									
(B request => C									
B request => D									
<pre>KB request => E</pre>									
C									
В									
B request => F									
B request => G									
4									
G									
E									

Exercise 3 (Real Mode and Protected Mode)

- 1. Describe the functioning of the real mode.
- 2. Why is it difficult to use real mode for multitasking operation mode?
- 3. Describe the functioning of the protected mode.
- 4. What is virtual memory?

5.	Explain, why virtual memory helps to better utilize the main memory.
6.	What is mapping?
7.	What is swapping?
8.	Which component of the CPU is used to implement virtual memory?
9.	Describe the function of the component from subtask 8.
10.	Name a virtual memory concept.
11.	What sort of fragmentation does occur with the concept of subtask 10?
12.	What causes a page fault exception to occur?
13.	What is the reaction of the operating system, when a page fault exception occurs?

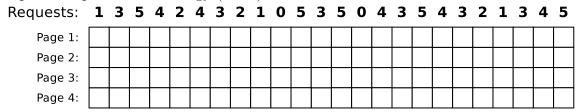
Content: Topics of slide set 07

- 14. What causes an access violation exception or general protection fault exception to occur?
- 15. What is the consequence (effect) of an access violation exception or general protection fault exception?
- 16. What contains the kernelspace?
- 17. What contains the userspace?

Content: Topics of slide set 07

Exercise 4 (Memory Management)

Please mark for each one of the following statements, whether the statement is true or false.


1.	Real mode is \Box True	suited for multitasking systems. \Box False
2.	-	mode, each process is executed in its own copy of the physical , which is protected from other processes. \Box False
3.	When static p ☐ True	partitioning is used, internal fragmentation occurs. \Box False
4.	When dynam: ☐ True	ic partitioning is used, external fragmentation cannot occur. \Box False
5.	With paging, \Box True	all pages have the same length. \Box False
6.	One advantag	ge of long pages is little internal fragmentation. \Box False
7.	A drawback o \square True	f short pages is that the page table gets bigger. \Box False
8.		is used, the MMU translates the logical memory addresses into ory addresses. $\hfill\Box$ False
9.	Modern opera paging.	ating systems (for x86) operate in protected mode and use only \Box False

Content: Topics of slide set 07 Page 5 of 9

Exercise 5 (Page Replacement Strategies)

- 1. Why is it impossible to implement the optimal replacement strategy OPT?
- 2. Perform the access sequence with the replacement strategies Optimal, LRU, LFU and FIFO once with a cache with a capacity of 4 pages and once with 5 pages. Also calculate the hit rate and the miss rate for all scenarios.

Optimal replacement strategy (OPT):

Hit rate: Miss rate:

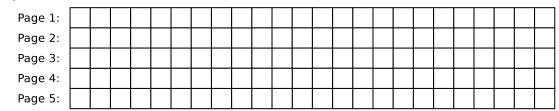
Hit rate: Miss rate:

Content: Topics of slide set 07 Page 6 of 9

Replacement strategy Least Recently Used (LRU):

Requests: 1 3 5 4 2 4 3 2 1 0 5 3 5 0 4 3 5 4 3 2 1 3 4 5

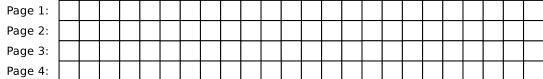
Page 1:


Page 2:

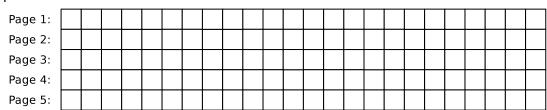
Page 3:

Page 4:

Hit rate: Miss rate:

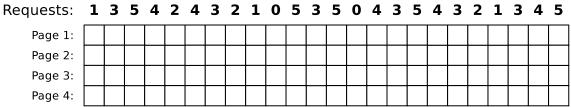

Requests: 1 3 5 4 2 4 3 2 1 0 5 3 5 0 4 3 5 4 3 2 1 3 4 5

Hit rate: Miss rate:


Replacement strategy Least Frequently Used (LFU):

Requests: 1 3 5 4 2 4 3 2 1 0 5 3 5 0 4 3 5 4 3 2 1 3 4 5

Hit rate: Miss rate:


Requests: 1 3 5 4 2 4 3 2 1 0 5 3 5 0 4 3 5 4 3 2 1 3 4 5

Hit rate: Miss rate:

Content: Topics of slide set 07 Page 7 of 9

Replacement strategy FIFO:

Hit rate: Miss rate:

Hit rate: Miss rate:

- 3. What is the key message of Laszlo Belady's anomaly?
- 4. Show Belady's anomaly by performing the access sequence with the replacement strategy FIFO once with a cache with a capacity of 3 pages and once with 4 pages. Also calculate the hit rate and the miss rate for both scenarios.

Content: Topics of slide set 07

Faculty of Computer Science and Engineering Frankfurt University of Applied Sciences

Requests:	3	2	1	0	3	2	4	3	2	1	0	4
Page 1:												
Page 2:												
Page 3:												

Hit rate:

Miss rate:

Requests: 3 2 1 0 3 2 4 3 2 1 0 4

Page 1:						
Page 2:						
Page 3:						
Page 4:						

Hit rate:

Miss rate:

Content: Topics of slide set 07 Page 9 of 9