
OPERATING SYSTEMS
Classi�cation, Architecture,

and Layering

Prof. Dr. Oliver Hahm

2024-10-24

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25

AGENDAAGENDA

Classi�cations

OS Categories

Kernel Architectures

Structure (Layers) of Operating Systems

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 2 / 45

RECAPRECAP

What do you already know? Let’s go to the survey again:

https://fra-uas.particifyapp.net/p/66824346

How many tasks can a modern OS

execute with a single CPU core?

Which concept is used to let a

multitasking OS execute multiple

tasks in parallel on a single CPU core?

What are the limiting factors when

executing multiple tasks in parallel?
Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 3 / 45

https://fra-uas.particifyapp.net/p/66824346

CLASSIFICATIONS

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 4 / 45

TASKS AND USERSTASKS AND USERS

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 5 / 45

SINGLETASKING AND MULTITASKINGSINGLETASKING AND MULTITASKING

Singletasking

At any given moment, only a single process is executed

Multiple started programs are executed one after the other

Multitasking

Multiple programs can be executed at the

same time (with multiple CPUs/Cores) or

pseudo parallel

Task, process, job,… In this context the terms task, process, or job are equivalent.

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 6 / 45

BENEFITS AND DRAWBACKS OF MULTITASKINGBENEFITS AND DRAWBACKS OF MULTITASKING

Processes often need to wait for external events, for example…

user input,

input/output (I/O) operations of peripheral devices, or

information from another process.

Multitasking avoids blocking

With multitasking processes, waiting for, e.g., incoming E-mails, successful

database operations, or data written into memory can yield the processor

Costs of Multitasking

Switching from one process to another one causes overhead.

 Dependent on the use case and the type of system this overhead may be

negligible or significant

→

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 7 / 45

SINGLE-USER AND MULTI-USERSINGLE-USER AND MULTI-USER

Single-User

The computer can only be used by single user at any point in

time

Multi-User

Multiple users can work simultaneously with the computer

Users share the system resources (typically as fair as possible)

Users must authenticate themselves (e.g., via credentials)

Resources like data or process must be separated and access control is

required

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 8 / 45

CLASSIFICATION OF MODERN(?) OPERATINGCLASSIFICATION OF MODERN(?) OPERATING
SYSTEMSSYSTEMS

Examples

Single-User Multi-User

Singletasking MS-DOS, Palm OS —

Multitasking OS/2, Windows 3x/95/98, BeOS, Linux/UNIX, MacOS X, Server

MacOS 8x/9x, AmigaOS, Risc OS editions of the Windows NT family

Many versions MS Windows (NT, XP, Vista, 7, 8, 10, 11) for

desktop/workstation allow for separation of data and process, but not for

concurrent use of the system between multiple users.

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 9 / 45

HARDWARE ARCHITECTURESHARDWARE ARCHITECTURES

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 10 / 45

8/16/32/64 BIT OPERATING SYSTEMS8/16/32/64 BIT OPERATING SYSTEMS

Any operating system works with a �xed memory address length — speci�ed

in bits

This limits the number of memory units which can be addressed by the OS

The upper bound is given by the address bus of the computer architecture

Different Architectures - 8 bit operating systems 256 memory units - e.g.,

GEOS, Atari DOS, Contiki

16 bit operating systems 65,536 memory units

e.g., MS-DOS, Windows 3.x, OS/2 1.x, RIOT

32 bit operating systems memory units

e.g., Windows 95/98/NT/Vista/7/8/10, OS/2 2/3/4, eComStation, Linux, BeOS, MacOS X (until

10.7), RIOT

64 bit operating systems memory units

e.g., Linux (64 bit), Windows 7/8 (64 bit), MacOS X (64 bit)

≡

≡

≊ 4.294 ∗ 10
9

≊ 18.446 ∗ 10
18

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 11 / 45

SIZE AND SCOPESIZE AND SCOPE

How big is an Operating System?

Which software does the OS

comprise?

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 12 / 45

OS CATEGORIES

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 13 / 45

REAL-TIME OPERATING SYSTEMSREAL-TIME OPERATING SYSTEMS

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 14 / 45

REAL-TIME OPERATING SYSTEMS (RTOS)REAL-TIME OPERATING SYSTEMS (RTOS)

An RTOS is a multitasking OS which can guarantee to

meet certain deadlines

Typically tasks can be assigned with di�erent

priorities

The ability to meet the desired deadlines may still

require precautions by the application developer

2 types of real-time operating systems exist:

Hard real-time operating systems

Soft real-time operating systems

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 15 / 45

HARD AND SOFT REAL-TIME OPERATING SYSTEMSHARD AND SOFT REAL-TIME OPERATING SYSTEMS

Hard real-time operating systems

Deadlines are strict

Delays cannot be accepted under any circumstances

Delays lead to disastrous consequences and high cost

Results are useless if they are achieved too late

Application examples: Welding robot, reactor control, Anti-lock braking system (ABS), aircraft

�ight control, monitoring systems of an intensive care unit

Soft real-time operating systems

Certain tolerances are allowed

Delays cause acceptable costs

Typical applications: Telephone system, parking ticket vending machine, ticket machine,

multimedia applications such as audio/video on demand

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 16 / 45

APPLICATIONS AND EXAMPLES OF RTOSAPPLICATIONS AND EXAMPLES OF RTOS

Typical application areas of RTOS:

Cell phones

Industrial monitoring systems

Robots

Examples of real-time operating

systems:

QNX

VxWorks

FreeRTOS

RTLinux

RIOT

Source: BMW Werk Leipzig (CC-BY-SA 2.0)

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 17 / 45

REAL-TIME ON PHONESREAL-TIME ON PHONES

Why does a cell phone (or a smartphone) require an

RTOS?

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 18 / 45

EMBEDDED OPERATING SYSTEMSEMBEDDED OPERATING SYSTEMS

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 19 / 45

EMBEDDED OPERATING SYSTEMSEMBEDDED OPERATING SYSTEMS

An embedded system is a computer system with a

dedicated function embedded in a larger system

It typically runs without a (direct) human user and

therefore often does not o�er a user interface (UI)

It o�ers typically less hardware resources than

traditional desktop or server systems

Subcategories

IoT OS

WSN OS

Router OS

Do not confuse RTOS are often embedded OS, but not every embedded OS is

an RTOS!

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 20 / 45

APPLICATIONS AND EXAMPLES OF EMBEDDEDAPPLICATIONS AND EXAMPLES OF EMBEDDED
OPERATING SYSTEMSOPERATING SYSTEMS
Mobile Health Building & Home Automation

Examples

Embedded Linux

Yocto

Openmoko

Sailfish

OpenWRT

…

Android

NetBSD

Windows CE

TinyOS

Cisco OS

NuttX

ChibiOS

Symbian

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 21 / 45

DISTRIBUTED OPERATING SYSTEMSDISTRIBUTED OPERATING SYSTEMS

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 22 / 45

DISTRIBUTED OPERATING SYSTEMS – CONCEPTDISTRIBUTED OPERATING SYSTEMS – CONCEPT
A distributed system allows the execution of a distributed application

Requires networking support

Controls processes on multiple computers of a cluster

The individual computers remain transparently hidden from the users and their applications:

The system appears as a single large computer

No implementation of a distributed

operating ever gained high practical

relevancy

However, during the development of some

distributed operating systems some

interesting technologies have been

developed and applied for the first time

Some of these technologies are still

relevant today

⟶

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 23 / 45

DISTRIBUTED OPERATING SYSTEMS – EXAMPLESDISTRIBUTED OPERATING SYSTEMS – EXAMPLES

Amoeba (Andrew S. Tanenbaum, Vrije Universiteit Amsterdam)

Mid-1980s to mid-1990s

The programming language Python was developed for Amoeba

The Amoeba Distributed Operating System. A. S. Tanenbaum, G. J. Sharp.

Inferno

Based on the UNIX operating system Plan 9

Minimal hardware requirements (requires only 1 MB of RAM)

Rainbow

Implements a uniform address space for all host in the distributed system

Rainbow OS: A distributed STM for in-memory data clusters. Thilo Schmitt, Nico Kämmer, Patrick Schmidt, Alexander Weggerle,

Steffen Gerhold, Peter Schulthess. MIPRO 2011

http://www.cs.vu.nl/pub/amoeba/Intro.pdf

http://www.vitanuova.com/inferno/index.html

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 24 / 45

http://www.cs.vu.nl/pub/amoeba/Intro.pdf
http://www.vitanuova.com/inferno/index.html

KERNEL ARCHITECTURES

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 25 / 45

KERNEL ARCHITECTURESKERNEL ARCHITECTURES

The kernel…

contains the essential functions of the

operating system and

runs with the highest privileges

Di�erent kernel architectures describe which functions are in the kernel and

which are outside the kernel as services

Functions in the kernel, have full hardware access (kernel mode)

Functions outside the kernel can only access their virtual memory (user

mode)

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 26 / 45

PROS AND CONSPROS AND CONS

What are the advantages of running services outside

kernel mode?What are the drawbacks?

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 27 / 45

MONOLITHIC KERNELSMONOLITHIC KERNELS

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 28 / 45

MONOLITHIC KERNELSMONOLITHIC KERNELS

Contain functions for…

memory management

process management

interprocess communication

hardware management (drivers)

�le systems

Advantages:

Fewer context switching as with microkernels better performance

Less complex interaction design

Drawbacks:

Crashed kernel components can not be restarted separately and may cause the entire system

to crash

Kernel extensions cause a high development e�ort, because for each compilation of the

extension, the complete kernel need to be recompiled

⟹

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 29 / 45

MONOLITHIC KERNELS: LINUXMONOLITHIC KERNELS: LINUX

Linux is the most popular modern

operating system with a monolithic

kernel

Do not confuse a modular kernel

design with a microkernel

It is possible to outsource drivers of

the Linux kernel into modules

However, the modules are executed in

kernel mode and not in the user mode

Therefore, the Linux kernel is a monolithic

kernel

Examples of operating systems with monolithic kernels Linux, BSD, MS-DOS,

FreeDOS, Windows 95/98/ME, MacOS (until 8.6), OS/2

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 30 / 45

MICROKERNELSMICROKERNELS

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 31 / 45

MICROKERNELSMICROKERNELS

Advantages:

Components can be exchanged easily

Best stability and security in theory

Reason: Fewer functions run in kernel mode

Drawbacks:

Slower because of more context switches

Development of a new (micro)kernel is a complex task

The success of the micro-kernel systems, which was forecasted in the early 1990s, did not happen

 Discussion of Linus Torvalds vs. Andrew S. Tanenbaum (1992) see slide ⟹ ⟹ [FolieTanenbaumTorwalds]

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 32 / 45

REQUIREMENTSREQUIREMENTS

Which hardware feature is required for a (reasonable)

implementation of a Microkernel?

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 33 / 45

LINUS TORVALDS VS. ANDREW TANENBAUMLINUS TORVALDS VS. ANDREW TANENBAUM
(1992)(1992)

August 26th 1991: Linus Torvalds announces the Linux project

in the newsgroup comp.os.minix

September 17th 1991: First internal release (0.01)

October 5th 1991: First o�cial release (0.02)

29. Januar 1992: Andrew S. Tanenbaum posts in the

Newsgroup comp.os.minix: LINUX is obsolete

Linux has a monolithic kernel step backwards

Linux is not portable, because it is optimized for the 80386 CPU and this

architecture will soon be replaced by RISC CPUs (fail!)

Image Source: unknown

This was followed by an intense and emotional several-day discussion about the advantages and drawbacks of monolithic kernel, microkernels,

software portability and free software

A. Tanenbaum (30. January 1992): I still maintain the point that designing a monolithic kernel in 1991 is a fundamental error. Be thankful you are not my student. You

would not get a high grade for such a design :-). Source:

⟹

http://www.oreilly.com/openbook/opensources/book/appa.html

The success of an operating system does not only depend on its architectural

design!

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 34 / 45

http://www.oreilly.com/openbook/opensources/book/appa.html

,,JUST FOR FUN”,,JUST FOR FUN”

Why did Linus Torvalds begin

to implement his own OS?

Why has Linux become the

Goto-OS for Internet

services?

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 35 / 45

A SAD KERNEL STORY – HURDA SAD KERNEL STORY – HURD

1984: Richard Stallman founds the GNU Project

Objective: Develop a free Unix operating system

 GNU HURD

GNU HURD system consists of:

GNU Mach, the microkernel

File systems, protocols, servers (services), which run in user mode

GNU software, e.g., editors (GNU Emacs), compilers (GNU Compiler

Collection (gcc)), shell (Bash),…

GNU HURD is completed so far

The GNU software is almost completed since the early 1990s

Not all servers are completely implemented

Image source:

Wikipedia (CC-BY-SA-2.0)

Wikipedia (CC-BY-SA-3.0)

⟹

stallman.org

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 36 / 45

file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/stallman.org

HYBRID KERNELSHYBRID KERNELS

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 37 / 45

HYBRID KERNELS / MACROKERNELSHYBRID KERNELS / MACROKERNELS

Tradeo� between monolithic kernels and microkernels

They contain for performance reasons some components, which are never located inside

microkernels

It is not speci�ed which additional components are located inside hybrid

kernels

Windows NT 4 indicates advantages and drawbacks of hybrid kernels

The kernel of Windows NT 4 contains the Graphics Device Interface

Advantage: Increased performance

Drawback: Buggy graphics drivers cause frequent crashes

Advantage:

Better performance as with microkernels because fewer context switching

The stability is (theoretically) better as with monolithic kernels

Examples of operating systems with hybrid kernels

Windows NT family since NT 3.1, ReactOS, MacOS X, BeOS, ZETA, Haiku, Plan 9, DragonFly BSD

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 38 / 45

COMPARING THE ARCHITECTURESCOMPARING THE ARCHITECTURES

Source: Wikipedia, public domain

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 39 / 45

STRUCTURE (LAYERS) OF
OPERATING SYSTEMS

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 40 / 45

STRUCTURE (LAYERS) OF OPERATING SYSTEMSSTRUCTURE (LAYERS) OF OPERATING SYSTEMS

Operating systems can be logically structured via layers

The layers surround each other

The layers contain from inside to outside ever more abstract functions

The minimum is 3 layers:

The innermost layer contains the hardware-dependent parts of the operating system

This layer allows to (theoretically!) easily port operating systems to di�erent computer architectures

The central layer contains basic input/output services (libraries and interfaces) for devices and

data

The outermost layer contains the applications and the user interface

Usually, operating systems are illustrated with more than 3 logical layers

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 41 / 45

PRIVILEGE RINGSPRIVILEGE RINGS

Layers communicate with neighboring layers via well-de�ned interfaces

Layers can call functions of the next inside layer

Layers provide functions to the next outside layer

All functions (services), which are o�ered by a layer, and the rules, which

must be observed, are called protocol

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 42 / 45

LAYERS OF LINUX/UNIXLAYERS OF LINUX/UNIX

In practice, the concept is not strictly followed all the time. User applications, can e.g., call

wrapper function of the standard library glibc or directly call the system calls)

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 43 / 45

LAYERS OF RIOTLAYERS OF RIOT

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 44 / 45

SUMMARYSUMMARY
You should now be able to answer the following

questions:

What are the di�erences between singletasking and

multitasking or single-user and multi-user operation?

How can operating systems be categorized with

respect to their applications?

What is the kernel of an OS and which di�erent

architectures exist?

How can an OS be structured via layers and what is

their purpose?

Operating Systems - Classi�cation, Architecture, and Layering - WS 24/25 45 / 45

